OpenCV结构分析与形状描述符(22)计算图像中某个轮廓或区域的矩函数moments()的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

计算一个多边形或光栅化形状直到三阶的所有矩。

该函数计算一个向量形状或光栅化形状直到三阶的矩。结果返回在 cv::Moments 结构中。

函数原型

cpp 复制代码
Moments cv::moments
(
	InputArray 	array,
	bool 	binaryImage = false 
)		

参数

  • 参数array 一个单通道的 8 位或浮点 2D 数组的光栅图像,或一个 1×N 或 N×1 的 2D 点(Point 或 Point2f)数组。
  • 参数binaryImage 如果为真,则所有非零图像像素被视为 1。该参数仅用于图像。

代码示例

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>

int main()
{
    // 创建一个空白的图像
    cv::Mat image = cv::Mat::zeros( 300, 300, CV_8UC1 );  // 单通道8位图像

    // 在图像中间画一个白色的圆形作为轮廓
    cv::circle( image, cv::Point( 150, 150 ), 50, cv::Scalar( 255 ), -1 );

    // 查找图像中的轮廓
    std::vector< std::vector< cv::Point > > contours;
    cv::findContours( image, contours, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_SIMPLE );

    // 计算轮廓的矩
    cv::Moments moments = cv::moments( contours[ 0 ] );

    // 从矩中计算质心
    double cx = moments.m10 / moments.m00;
    double cy = moments.m01 / moments.m00;

    // 计算面积
    double area = moments.m00;

    // 在图像上标记质心
    cv::circle( image, cv::Point( static_cast< int >( cx ), static_cast< int >( cy ) ), 5, cv::Scalar( 128 ), -1 );

   

    // 输出质心坐标和面积
    std::cout << "Centroid at (" << cx << ", " << cy << ")" << std::endl;
    std::cout << "Area: " << area << std::endl;
     // 显示图像
    cv::imshow( "Contour with Centroid", image );
    cv::waitKey( 0 );
    
    return 0;
}

运行结果

终端:

bash 复制代码
Centroid at (150, 150)
Area: 7704

图像:

相关推荐
音视频牛哥3 分钟前
超清≠清晰:视频系统里的分辨率陷阱与秩序真相
人工智能·机器学习·计算机视觉·音视频·大牛直播sdk·rtsp播放器rtmp播放器·smartmediakit
johnny2334 分钟前
AI视频创作工具汇总:MoneyPrinterTurbo、KrillinAI、NarratoAI、ViMax
人工智能·音视频
Coovally AI模型快速验证40 分钟前
当视觉语言模型接收到相互矛盾的信息时,它会相信哪个信号?
人工智能·深度学习·算法·机器学习·目标跟踪·语言模型
居7然40 分钟前
Attention注意力机制:原理、实现与优化全解析
人工智能·深度学习·大模型·transformer·embedding
Scabbards_41 分钟前
KGGEN: 用语言模型从纯文本中提取知识图
人工智能·语言模型·自然语言处理
LeonDL1681 小时前
【通用视觉框架】基于C#+Winform+OpencvSharp开发的视觉框架软件,全套源码,开箱即用
人工智能·c#·winform·opencvsharp·机器视觉软件框架·通用视觉框架·机器视觉框架
AI纪元故事会1 小时前
《目标检测全解析:从R-CNN到DETR,六大经典模型深度对比与实战指南》
人工智能·yolo·目标检测·r语言·cnn
Shang180989357261 小时前
T41LQ 一款高性能、低功耗的系统级芯片(SoC) 适用于各种AIoT应用智能安防、智能家居方案优选T41L
人工智能·驱动开发·嵌入式硬件·fpga开发·信息与通信·信号处理·t41lq
Bony-2 小时前
用于糖尿病视网膜病变图像生成的GAN
人工智能·神经网络·生成对抗网络
罗西的思考2 小时前
【Agent】 ACE(Agentic Context Engineering)源码阅读笔记---(3)关键创新
人工智能·算法