20. 损失函数

损失函数
1. 损失函数的作用
  • 损失函数用于衡量预测值和真实之间的误差关系,用于后续的模型参数调整也就是模型训练过程中的参数指导
  • pytorch的nn模块中包含了回归任务、分类任务的诸多损失函数计算方式,网址(https://pytorch.org/docs/stable/nn.html#loss-functions)中给出了各种损失函数的调用结构,以及详细的损失函数的使用说明
2.MSELoss介绍
  • nn模块中直接集成了具体的损失函数,通过下面的代码可以创建一个损失函数类的实例

    python 复制代码
    from torch import nn
    loss = nn.MSELoss(reduction)
    • reduction:用于指定计算误差的方法是取均值还是总和

      • reduction="sum"时损失函数的计算方式为
        l o s s = ∑ i n ( x i − y i ) 2 loss = \sum_{i}^{n}{(x_i - y_i)^2} loss=i∑n(xi−yi)2

      • reduction="mean"时损失函数的计算方式为
        l o s s = ∑ i n ( x i − y i ) 2 n loss={\sum_{i}^{n}{(x_i-y_i)^2} \over n} loss=n∑in(xi−yi)2

  • 使用创建的实例进行一个简单计算

    python 复制代码
    result_loss = loss(input, target)
    • input targe:分别是输入和输出,使用损失函数时要特别注意数据维度的问题(通常情况下 input.shape == target.shape),官方文档中可以查看的每个函数的对数据输入和输出的维度的要求
3. CrossEntropyLoss介绍
  • 交叉熵损失函数一般用于在分类特别是多分类问题中,衡量的是模型预测的概率分布与真实分布之间的差异数值越小表示模型预测越接近真实标签。nn模块中集成了这个交叉熵损失函数

    python 复制代码
    loss = nn.CrossEntropyLoss()
  • nn模块中的 CrossEntropyLoss对于输入数据是集成了 softmax概率计算的,所以对于网络结构得到的数据直接投入损失函数中计算即可,不需要单独进行softmax:

    python 复制代码
    result_loss = loss(input, target)
    • 同样是需要注意维度要求,常见情况如下所示:
      • input(C) --> target(1): 具体情况为一个样本会生成对C个类别的预测概率,而target只需要具体指定当前样本的类别是什么就可以
      • input(N, C) --> target(N):具体情况为,样本集合的batch_size=N,target给出了每一个样本本的类别序号
相关推荐
新智元4 分钟前
世界首富换人!81 岁硅谷狂人 4000 亿身价碾压马斯克,33 岁华裔才女逆袭
人工智能·openai
lingling0098 分钟前
分子生物学ELN系统:如何通过衍因科技实现实验室效率革命
人工智能
max50060022 分钟前
实时多模态电力交易决策系统:设计与实现
图像处理·人工智能·深度学习·算法·音视频
男孩李39 分钟前
浅谈代理流程自动化 (APA)
运维·人工智能·自动化
君名余曰正则39 分钟前
机器学习06——支持向量机(SVM核心思想与求解、核函数、软间隔与正则化、支持向量回归、核方法)
人工智能·机器学习·支持向量机
sjr20011 小时前
从huggingface下载模型时有哪些文件?
人工智能·机器学习
moz与京1 小时前
【面试向】热门技术话题(上)
人工智能·物联网·机器学习·面试·web3·区块链·元宇宙
wyfwyf___1 小时前
5G+IoT+AI:新质工业新图景,从预测性维护到全链路数智化
人工智能·科技·物联网·5g·信息与通信
gptplusplus2 小时前
AI智能体(Agent):从“辅助决策”到“自主行动”,重新定义下一个商业时代
人工智能
别忘了微笑啊2 小时前
hCaptcha 图像识别 API 对接说明
人工智能