20. 损失函数

损失函数
1. 损失函数的作用
  • 损失函数用于衡量预测值和真实之间的误差关系,用于后续的模型参数调整也就是模型训练过程中的参数指导
  • pytorch的nn模块中包含了回归任务、分类任务的诸多损失函数计算方式,网址(https://pytorch.org/docs/stable/nn.html#loss-functions)中给出了各种损失函数的调用结构,以及详细的损失函数的使用说明
2.MSELoss介绍
  • nn模块中直接集成了具体的损失函数,通过下面的代码可以创建一个损失函数类的实例

    python 复制代码
    from torch import nn
    loss = nn.MSELoss(reduction)
    • reduction:用于指定计算误差的方法是取均值还是总和

      • reduction="sum"时损失函数的计算方式为
        l o s s = ∑ i n ( x i − y i ) 2 loss = \sum_{i}^{n}{(x_i - y_i)^2} loss=i∑n(xi−yi)2

      • reduction="mean"时损失函数的计算方式为
        l o s s = ∑ i n ( x i − y i ) 2 n loss={\sum_{i}^{n}{(x_i-y_i)^2} \over n} loss=n∑in(xi−yi)2

  • 使用创建的实例进行一个简单计算

    python 复制代码
    result_loss = loss(input, target)
    • input targe:分别是输入和输出,使用损失函数时要特别注意数据维度的问题(通常情况下 input.shape == target.shape),官方文档中可以查看的每个函数的对数据输入和输出的维度的要求
3. CrossEntropyLoss介绍
  • 交叉熵损失函数一般用于在分类特别是多分类问题中,衡量的是模型预测的概率分布与真实分布之间的差异数值越小表示模型预测越接近真实标签。nn模块中集成了这个交叉熵损失函数

    python 复制代码
    loss = nn.CrossEntropyLoss()
  • nn模块中的 CrossEntropyLoss对于输入数据是集成了 softmax概率计算的,所以对于网络结构得到的数据直接投入损失函数中计算即可,不需要单独进行softmax:

    python 复制代码
    result_loss = loss(input, target)
    • 同样是需要注意维度要求,常见情况如下所示:
      • input(C) --> target(1): 具体情况为一个样本会生成对C个类别的预测概率,而target只需要具体指定当前样本的类别是什么就可以
      • input(N, C) --> target(N):具体情况为,样本集合的batch_size=N,target给出了每一个样本本的类别序号
相关推荐
magic_ll几秒前
【大模型】使用llamafactory 训练 qwen2.5-VL 的目标检测任务
人工智能·目标检测·计算机视觉
Franklin1 分钟前
AI Coding 基础实践04:Pycharm 项目移植AI 工具 TRAE的history
人工智能
得贤招聘官8 分钟前
破局传统招聘:AI面试智能体构建精准高效新生态
大数据·人工智能·面试
胡萝卜3.08 分钟前
Linux包管理器:高效安装软件的秘诀
linux·运维·服务器·人工智能·linux包管理·yum教程·apt入门
~央千澈~8 分钟前
人工智能AI算法推荐之番茄算法推荐证实其算法推荐规则技术解析·卓伊凡
人工智能·算法·机器学习
执笔论英雄10 分钟前
【RL】ROLL中loss 计算compute_approx_kl
人工智能
sealaugh3213 分钟前
AI(学习笔记第十七课)langchain v1.0(SQL Agent)
人工智能·笔记·学习
zbguolei15 分钟前
使用VBA将EXCEL生成PPT
人工智能·opencv·计算机视觉
易百纳15 分钟前
易百纳携多模态AI桌面机器人——Kubee Robot亮相2025火山引擎冬季FORCE大会
人工智能·火山引擎
zhengfei61116 分钟前
AI渗透工具——自主进攻性安全人工智能,用于指导渗透测试流程(EVA)
人工智能·安全