20. 损失函数

损失函数
1. 损失函数的作用
  • 损失函数用于衡量预测值和真实之间的误差关系,用于后续的模型参数调整也就是模型训练过程中的参数指导
  • pytorch的nn模块中包含了回归任务、分类任务的诸多损失函数计算方式,网址(https://pytorch.org/docs/stable/nn.html#loss-functions)中给出了各种损失函数的调用结构,以及详细的损失函数的使用说明
2.MSELoss介绍
  • nn模块中直接集成了具体的损失函数,通过下面的代码可以创建一个损失函数类的实例

    python 复制代码
    from torch import nn
    loss = nn.MSELoss(reduction)
    • reduction:用于指定计算误差的方法是取均值还是总和

      • reduction="sum"时损失函数的计算方式为
        l o s s = ∑ i n ( x i − y i ) 2 loss = \sum_{i}^{n}{(x_i - y_i)^2} loss=i∑n(xi−yi)2

      • reduction="mean"时损失函数的计算方式为
        l o s s = ∑ i n ( x i − y i ) 2 n loss={\sum_{i}^{n}{(x_i-y_i)^2} \over n} loss=n∑in(xi−yi)2

  • 使用创建的实例进行一个简单计算

    python 复制代码
    result_loss = loss(input, target)
    • input targe:分别是输入和输出,使用损失函数时要特别注意数据维度的问题(通常情况下 input.shape == target.shape),官方文档中可以查看的每个函数的对数据输入和输出的维度的要求
3. CrossEntropyLoss介绍
  • 交叉熵损失函数一般用于在分类特别是多分类问题中,衡量的是模型预测的概率分布与真实分布之间的差异数值越小表示模型预测越接近真实标签。nn模块中集成了这个交叉熵损失函数

    python 复制代码
    loss = nn.CrossEntropyLoss()
  • nn模块中的 CrossEntropyLoss对于输入数据是集成了 softmax概率计算的,所以对于网络结构得到的数据直接投入损失函数中计算即可,不需要单独进行softmax:

    python 复制代码
    result_loss = loss(input, target)
    • 同样是需要注意维度要求,常见情况如下所示:
      • input(C) --> target(1): 具体情况为一个样本会生成对C个类别的预测概率,而target只需要具体指定当前样本的类别是什么就可以
      • input(N, C) --> target(N):具体情况为,样本集合的batch_size=N,target给出了每一个样本本的类别序号
相关推荐
爱学习的程序媛4 分钟前
【DeepSeek实战】高质量提示词的六种类型
人工智能·prompt
大千AI助手24 分钟前
敏感性分析(Sensitivity Analysis)在机器学习中的应用详解
人工智能·机器学习·敏感性分析·sa·大千ai助手·sensitivity·可解释ai
编程小白_正在努力中27 分钟前
从入门到精通:周志华《机器学习》第一、二章深度解析
人工智能·机器学习
编码追梦人28 分钟前
基于 ESP32 与机器学习的智能语音家居控制系统
人工智能·机器学习
koo36430 分钟前
李宏毅机器学习笔记
人工智能·笔记·机器学习
nix.gnehc32 分钟前
机器学习概念
人工智能·机器学习
长桥夜波34 分钟前
机器学习日报17
人工智能·机器学习
Nina_71737 分钟前
pytorch核心组件以及流程
人工智能·pytorch·python
Elastic 中国社区官方博客38 分钟前
Elasticsearch 的结构化文档配置 - 递归分块实践
大数据·人工智能·elasticsearch·搜索引擎·ai·全文检索·jenkins
掘金一周40 分钟前
重新思考 weapp-tailwindcss 的未来 | 掘金一周 11.13
前端·人工智能·后端