20. 损失函数

损失函数
1. 损失函数的作用
  • 损失函数用于衡量预测值和真实之间的误差关系,用于后续的模型参数调整也就是模型训练过程中的参数指导
  • pytorch的nn模块中包含了回归任务、分类任务的诸多损失函数计算方式,网址(https://pytorch.org/docs/stable/nn.html#loss-functions)中给出了各种损失函数的调用结构,以及详细的损失函数的使用说明
2.MSELoss介绍
  • nn模块中直接集成了具体的损失函数,通过下面的代码可以创建一个损失函数类的实例

    python 复制代码
    from torch import nn
    loss = nn.MSELoss(reduction)
    • reduction:用于指定计算误差的方法是取均值还是总和

      • reduction="sum"时损失函数的计算方式为
        l o s s = ∑ i n ( x i − y i ) 2 loss = \sum_{i}^{n}{(x_i - y_i)^2} loss=i∑n(xi−yi)2

      • reduction="mean"时损失函数的计算方式为
        l o s s = ∑ i n ( x i − y i ) 2 n loss={\sum_{i}^{n}{(x_i-y_i)^2} \over n} loss=n∑in(xi−yi)2

  • 使用创建的实例进行一个简单计算

    python 复制代码
    result_loss = loss(input, target)
    • input targe:分别是输入和输出,使用损失函数时要特别注意数据维度的问题(通常情况下 input.shape == target.shape),官方文档中可以查看的每个函数的对数据输入和输出的维度的要求
3. CrossEntropyLoss介绍
  • 交叉熵损失函数一般用于在分类特别是多分类问题中,衡量的是模型预测的概率分布与真实分布之间的差异数值越小表示模型预测越接近真实标签。nn模块中集成了这个交叉熵损失函数

    python 复制代码
    loss = nn.CrossEntropyLoss()
  • nn模块中的 CrossEntropyLoss对于输入数据是集成了 softmax概率计算的,所以对于网络结构得到的数据直接投入损失函数中计算即可,不需要单独进行softmax:

    python 复制代码
    result_loss = loss(input, target)
    • 同样是需要注意维度要求,常见情况如下所示:
      • input(C) --> target(1): 具体情况为一个样本会生成对C个类别的预测概率,而target只需要具体指定当前样本的类别是什么就可以
      • input(N, C) --> target(N):具体情况为,样本集合的batch_size=N,target给出了每一个样本本的类别序号
相关推荐
安达发公司2 分钟前
安达发|石油化工行业自动排产软件:驱动产业升级的核心引擎
大数据·人工智能·aps高级排程·aps排程软件·安达发aps·自动排产软件
openFuyao3 分钟前
参与openFuyao嘉年华,体验开源开发流程,领视频年卡会员
人工智能·云原生·开源·开源软件·多样化算力
摸鱼仙人~5 分钟前
跨文化范式迁移与数字经济重构:借鉴日本IP工业化经验构建中国特色现代文化产业体系深度研究报告
大数据·人工智能
皮肤科大白5 分钟前
图像处理的 Python库
图像处理·人工智能·python
摸鱼仙人~13 分钟前
中国内需市场的战略重构与潜在增长点深度研究报告
大数据·人工智能
一招定胜负13 分钟前
自然语言处理CBOW模型:基于上下文预测中间词
人工智能·深度学习·机器学习
jimmyleeee14 分钟前
人工智能基础知识笔记三十二:向量数据库的查找类型和工作原理
人工智能·笔记
像风一样自由202018 分钟前
MCP 入门指南:让 AI 连接真实世界
人工智能
尚可签24 分钟前
怎么降低AI率(文本)?最近发现了非常简单的思路
人工智能
咕噜企业分发小米27 分钟前
阿里云AI教育产品如何助力企业提升客户粘性?
人工智能·microsoft·阿里云