20. 损失函数

损失函数
1. 损失函数的作用
  • 损失函数用于衡量预测值和真实之间的误差关系,用于后续的模型参数调整也就是模型训练过程中的参数指导
  • pytorch的nn模块中包含了回归任务、分类任务的诸多损失函数计算方式,网址(https://pytorch.org/docs/stable/nn.html#loss-functions)中给出了各种损失函数的调用结构,以及详细的损失函数的使用说明
2.MSELoss介绍
  • nn模块中直接集成了具体的损失函数,通过下面的代码可以创建一个损失函数类的实例

    python 复制代码
    from torch import nn
    loss = nn.MSELoss(reduction)
    • reduction:用于指定计算误差的方法是取均值还是总和

      • reduction="sum"时损失函数的计算方式为
        l o s s = ∑ i n ( x i − y i ) 2 loss = \sum_{i}^{n}{(x_i - y_i)^2} loss=i∑n(xi−yi)2

      • reduction="mean"时损失函数的计算方式为
        l o s s = ∑ i n ( x i − y i ) 2 n loss={\sum_{i}^{n}{(x_i-y_i)^2} \over n} loss=n∑in(xi−yi)2

  • 使用创建的实例进行一个简单计算

    python 复制代码
    result_loss = loss(input, target)
    • input targe:分别是输入和输出,使用损失函数时要特别注意数据维度的问题(通常情况下 input.shape == target.shape),官方文档中可以查看的每个函数的对数据输入和输出的维度的要求
3. CrossEntropyLoss介绍
  • 交叉熵损失函数一般用于在分类特别是多分类问题中,衡量的是模型预测的概率分布与真实分布之间的差异数值越小表示模型预测越接近真实标签。nn模块中集成了这个交叉熵损失函数

    python 复制代码
    loss = nn.CrossEntropyLoss()
  • nn模块中的 CrossEntropyLoss对于输入数据是集成了 softmax概率计算的,所以对于网络结构得到的数据直接投入损失函数中计算即可,不需要单独进行softmax:

    python 复制代码
    result_loss = loss(input, target)
    • 同样是需要注意维度要求,常见情况如下所示:
      • input(C) --> target(1): 具体情况为一个样本会生成对C个类别的预测概率,而target只需要具体指定当前样本的类别是什么就可以
      • input(N, C) --> target(N):具体情况为,样本集合的batch_size=N,target给出了每一个样本本的类别序号
相关推荐
说私域1 天前
从“高密度占有”到“点状渗透”:论“开源AI智能名片链动2+1模式”在S2B2C商城小程序中的渠道革新
人工智能·小程序
limenga1021 天前
TensorFlow Keras:快速搭建神经网络模型
人工智能·python·深度学习·神经网络·机器学习·tensorflow
KG_LLM图谱增强大模型1 天前
Vgent:基于图的多模态检索推理增强生成框架GraphRAG,突破长视频理解瓶颈
大数据·人工智能·算法·大模型·知识图谱·多模态
AKAMAI1 天前
企业如何平衡AI创新与风险
人工智能·云原生·云计算
TDengine (老段)1 天前
优化 TDengine IDMP 面板编辑的几种方法
人工智能·物联网·ai·时序数据库·tdengine·涛思数据
数据的世界011 天前
Visual Studio 2026 正式发布:AI 原生 IDE 与性能革命的双向突破
ide·人工智能·visual studio
shayudiandian1 天前
深度学习中的激活函数全解析:该选哪一个?
人工智能·深度学习
视界先声1 天前
如何选择合适的养老服务机器人
人工智能·物联网·机器人
RPA机器人就选八爪鱼1 天前
RPA财务机器人:重塑财务效率,数字化转型的核心利器
大数据·数据库·人工智能·机器人·rpa