【AI赋能医学】基于深度学习和HRV特征的多类别心电图分类

一、数据集简介

论文中使用了来自三类不同心电图记录的162条数据,这些数据来自三个公开的数据库:

MIT-BIH 心律失常数据库 (ARR)

96条记录,主要包含不同类型的心律失常样本。

MIT-BIH 正常窦性心律数据库 (NSR)

36条记录,包含健康人的正常心电图信号。

Beth Israel Deaconess Medical Center 心力衰竭数据库 (CHF)

30条记录,包含充血性心力衰竭患者的心电图。

所有心电图信号都来自导联II和VI,并且经过统一处理,将采样频率调整为128 Hz,消除了偏移效应。每条心电图信号都由心脏病专家手动标注,确保了数据的准确性。

再次说明:

该方法的有效性通过162条心电图(ECG)记录进行测试,这些记录分为三类:心律失常(ARR)、充血性心力衰竭(CHF)和正常窦性心律(NSR)。这些记录来自以下公共数据库:

MIT-BIH 心律失常数据库

MIT-BIH 正常窦性心律数据库

Beth Israel Deaconess Medical Center 心力衰竭数据库

数据集包含:

96条心律失常记录

30条心力衰竭记录

36条正常窦性心律记录

所有心电信号均来自导联II和导联VI,并且经过重新采样,统一为128 Hz的采样频率,以确保数据一致性并消除偏移效应。每条记录都由多位心脏病专家进行了手动分析和标注。

二、模型实现步骤

按照以下步骤进行模型实现:

  1. 数据预处理
    信号归一化:将心电图信号标准化,消除偏移效应。
    特征提取:
    提取基于心电图(ECG)的特征,如RR间期、P波、QRS波等。
    提取基于心率变异性(HRV)的特征,如时域和频域特征。
    重新采样:将所有信号重采样至128 Hz。
  2. 模型结构
    特征组合:将心电图特征与HRV特征结合,作为多类别分类模型的输入。
    深度学习模型:使用深度学习框架(如CNN、LSTM等)自动提取特征。论文中建议使用卷积神经网络(CNN)处理心电图信号,并结合心率变异性特征进行分类。
    分类模型:利用一个全连接层进行多类别分类,模型的输出对应ARR、CHF和NSR三类。
  3. 模型训练
    使用训练集对模型进行训练,优化损失函数(如交叉熵损失函数)。
    采用K折交叉验证来评估模型的性能。
  4. 模型评估
    使用准确率、灵敏度、特异性等评价指标评估模型性能。
    对ARR、CHF和NSR三类心电图数据进行多类别分类,检查模型的泛化能力。
  5. 实现步骤
    使用Python、TensorFlow、Keras等深度学习库实现模型。
    将数据集分为训练集和测试集,进行训练、评估。

参考

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10542398/

https://www.mdpi.com/1424-8220/23/3/1697

相关推荐
AI视觉网奇4 分钟前
音频分类模型笔记
人工智能·python·深度学习
Dante但丁6 分钟前
手扒Github项目文档级知识图谱构建框架RAKG(保姆级)Day4
人工智能
用户51914958484514 分钟前
使用JavaScript与CSS创建"移动高亮"导航栏
人工智能·aigc
Java中文社群22 分钟前
淘宝首位程序员离职,竟投身AI新公司做这事!
人工智能·后端·程序员
失散1334 分钟前
自然语言处理——02 文本预处理(上)
人工智能·自然语言处理
CoovallyAIHub37 分钟前
农田扫描提速37%!基于检测置信度的无人机“智能抽查”路径规划,Coovally一键加速模型落地
深度学习·算法·计算机视觉
Listennnn1 小时前
nuScence数据集
人工智能
duration~1 小时前
SpringAI集成MCP
人工智能·后端·spring·ai
用户5191495848451 小时前
Linux内核UAF漏洞利用实战:Holstein v3挑战解析
人工智能·aigc
nenchoumi31192 小时前
Tello无人机与LLM模型控制 ROS
人工智能·语言模型·机器人·无人机