量化交易的个人见解

程序化交易在国内兴起有些年数了,个人以为,程序化交易与量化投资的关系,在于两者侧重点有差别。程序化交易侧重于下单的动作是机器自动执行的,量化投资则侧重于投资分析的过程是通过一个量化模型来实现的,所以量化投资也可以是手动下单的,而程序化交易,除了有一部分是条件单之外,其他交易都是要有个数学模型来发出交易信号的,因此大部分的程序化交易属于量化投资的范畴。无论是程序化交易还是量化投资,本质上来说,都是决策与执行的工具。有业内人士提出,量化投资叫投资量化更好,同理,程序化交易如果叫交易程序化也会更贴近其实质。

就研究的范围来说,目前的量化投资研究范围已经非常广泛,包括宏观量化、基本面量化、财报量化、事件量化、交易所交易数据量化等等,只要有数据就可以量化,量化作为一个工具其作用被发挥得淋漓尽致。在国内,程序化交易在绝大多数情况下指对交易所交易数据进行建模,并根据模型发出的信号进行自动交易。然而,这么多年来,能够通过这种程序化交易获利的人数并不多,程序化交易除了风控做得好一点,盈利状况与主观交易并无太大差异。究其原因,首先是研究范围狭窄,量化投资有那么大的研究范围,而现在还有太多人只是研究交易所交易数据,通过研究交易数据获得的利润,要分给这么多交易者,平均每个人能分配到的利润当然非常微薄,微薄到不够支付交易手续费。这里期货和股票情况不太一样,期货程序化交易获利可以认为是随机的,但最终大多数人都败给了交易成本;股票使用程序化交易的人相对还较少,应该还有发展空间:期权没有开放交易接口,情况也是如此。这是目前的情况。

其实在程序化交易刚刚兴起的时候,是很容易获利的,一个很简单的均线模型、或者MACD模型就可以获利,后来懂的人多了,自然就不灵了。所以现在是到了程序化交易者们去开拓新领域的时候了,如何结合宏观分析、基本面或者行业分析、事件驱动,来进行程序化交易,是后续能否盈利的关键。当然,也可以把程序化交易只是作为一个辅助执行工具、或者是一个寻找技术上的合适买卖点的工具来使用。甚至可以通过宏观及行业分析,主观判断行情趋势,然后利用程序化交易去寻找买卖点自动执行,再用程序化交易进行风控和资金管理,自动执行出场及止损。

程序化交易未来的发展,一个很重要的方向是AI。人的思维毕竟有局限性,用AI自动学习,自动去寻找交易策略则可以突破人的这种局限性。AI找出来的策略未必能够用逻辑去解释,但只要交易信号数量足够多,盈亏比和胜率达到要求,就可以尝试。

相关推荐
查理零世15 分钟前
【算法】经典博弈论问题——巴什博弈 python
开发语言·python·算法
汤姆和佩琦1 小时前
2025-1-21-sklearn学习(43) 使用 scikit-learn 介绍机器学习 楼上阑干横斗柄,寒露人远鸡相应。
人工智能·python·学习·机器学习·scikit-learn·sklearn
HyperAI超神经1 小时前
【TVM教程】为 ARM CPU 自动调优卷积网络
arm开发·人工智能·python·深度学习·机器学习·tvm·编译器
缺的不是资料,是学习的心2 小时前
使用qwen作为基座训练分类大模型
python·机器学习·分类
Zda天天爱打卡3 小时前
【机器学习实战中阶】使用Python和OpenCV进行手语识别
人工智能·python·深度学习·opencv·机器学习
martian6653 小时前
第19篇:python高级编程进阶:使用Flask进行Web开发
开发语言·python
gis收藏家3 小时前
利用 SAM2 模型探测卫星图像中的农田边界
开发语言·python
YiSLWLL3 小时前
Tauri2+Leptos开发桌面应用--绘制图形、制作GIF动画和mp4视频
python·rust·ffmpeg·音视频·matplotlib
数据馅3 小时前
python自动生成pg数据库表对应的es索引
数据库·python·elasticsearch
编程、小哥哥4 小时前
python操作mysql
android·python