大棚分割数据集,40765对影像,16.9g数据量,0.8米高分二,纯手工标注(arcgis标注)的大规模农业大棚分割数据集。

数据集名称:

  • )"Greenhouse Segmentation Dataset (GSD)"

数据集规模:

  • 包含40,765对用于大棚分割的影像数据,每对影像包括一张原始图像和相应的分割标签图。

数据量:

  • 总数据量约为16.9GB,适合存储在现代计算机系统中,便于下载和管理。

图像分辨率与来源:

  • 图像来源于高分二号(GF-2)卫星,具有0.8米的空间分辨率。这提供了足够清晰的细节来区分地面物体,尤其是农业大棚。
  • 图像尺寸未明确给出,但通常卫星图像会根据应用场景裁剪成合适的大小以方便处理。

标注方法:

  • 所有的大棚分割标签都是通过ArcGIS软件纯手工标注完成的,这意味着每个大棚的边界都被精确地描绘出来。
  • 手工标注确保了数据集的高质量,但也意味着数据准备过程相当耗时和费力。

应用场景:

  • 这个数据集非常适合用于农业监测、农作物管理和环境研究等领域。
  • 特别是在精准农业中,大棚分割可以帮助农民更好地管理种植区域,优化资源配置。

技术指标:

  • 数据集可用于训练深度学习模型,特别是语义分割和实例分割模型。
  • 由于是手工标注,可以作为基准测试数据集,用来评估不同分割算法的性能。

使用建议:

  • 在使用这个数据集之前,建议先检查是否有任何许可协议需要遵守。
  • 对于研究人员来说,可以利用这个数据集来改进现有的分割算法或者开发新的方法来提高大棚分割的精度。

注意事项:

  • 处理这些高分辨率图像时,需要相应的硬件支持,以确保计算效率。
  • 数据集中可能包含某些敏感区域的信息,在使用时应遵守当地法律法规。

希望这个介绍能够帮助您更好地理解和使用这个农业大棚分割数据集。如果需要进一步的信息或者具体的应用指导,可以参考数据集发布者的文档或联系相关人员获取更多信息。

相关推荐
狂小虎15 小时前
Ubuntu下载zenodo文件Ubuntu download zenodo
ubuntu·数据集·zenodo
HyperAI超神经2 天前
超越 GPT-4o!从 HTML 到 Markdown,一键整理复杂网页;AI 对话不再冰冷,大模型对话微调数据集让响应更流畅
人工智能·深度学习·llm·html·数据集·多模态·gpt-4o
HyperAI超神经9 天前
微软与腾讯技术交锋,TRELLIS引领3D生成领域多格式支持新方向
人工智能·深度学习·机器学习·计算机视觉·3d·大模型·数据集
小舞O_o17 天前
RP2K:一个面向细粒度图像的大规模零售商品数据集
人工智能·pytorch·python·分类·数据集
weixin_468466851 个月前
医学影像数据集汇总分享
深度学习·目标检测·数据集·图像分割·机器视觉·医学影像·ct影像
数据岛1 个月前
大模型应用的数字能源数据集
大数据·数据分析·数据集·能源
知来者逆1 个月前
Octo—— 基于80万个机器人轨迹的预训练数据集用于训练通用机器人,可在零次拍摄中解决各种任务
人工智能·机器学习·机器人·数据集·大语言模型
数据猎手小k2 个月前
EmoAva:首个大规模、高质量的文本到3D表情映射数据集。
人工智能·算法·3d·数据集·机器学习数据集·ai大模型应用
数据猎手小k2 个月前
GEOBench-VLM:专为地理空间任务设计的视觉-语言模型基准测试数据集
人工智能·语言模型·自然语言处理·数据集·机器学习数据集·ai大模型应用
dundunmm2 个月前
论文阅读之方法: Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris
论文阅读·数据挖掘·数据集·聚类·单细胞·细胞聚类·细胞测序