深度学习之线性代数预备知识点

|----------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 概念 | 定义 | 公式/案例 |
| 标量(Scalar) | 一个单独的数值,表示单一的量。 | 例如:5, 3.14, -2 |
| 向量 (Vector) | 一维数组,表示具有方向和大小的量。 | ,表示三维空间中的向量 |
| 模(Magnitude) | 向量的长度,也称为范数(通常为L2范数)。 | 向量,其模: |
| 范数 (Norm) | 向量的大小,常见范数有L1范数(绝对值之和)和L2范数(欧几里得范数,平方和的开方)。 | L1范数 |
| 单位向量 (Unit Vector) | 模为1的向量,表示纯粹的方向。 | |
| 内积 (点乘) | 两个向量相乘得到的标量,反映两个向量的相似度。 | ,例如 |
| 外积(叉乘) | 两个向量相乘得到的矩阵,表示向量之间的关系。 | ,例如, |
| 矩阵 (Matrix) | 二维数组,表示数据的多维结构,行和列的排列组合。 | ,表示是一个2*2的矩阵 |
| 矩阵转置(Transpose) | 矩阵的行列互换。 | |
| 矩阵乘法(Multiplication) | 矩阵按特定规则进行乘法运算,行向量与列向量的点积。 | |
| 乘法的性质 | 矩阵乘法满足结合律、但不满足交换律。 | 例如,但 |
| 张量 (Tensor) | 高维数组,表示多维数据的结构,扩展了标量、向量和矩阵的概念。 | 例如,一个三阶张量可以表示为,每个A矩阵 |

  • 向量的内积 :在深度学习中,内积用于衡量输入向量与权重向量的相似性。例如,在一个简单的神经元中,输入权重,其输出为,即输入与权重的内积结果。

  • 矩阵乘法 :在神经网络的全连接层中,输入向量通过权重矩阵进行矩阵乘法,从而生成输出。假设输入向量,权重矩阵,输出为y=W×x。

相关推荐
Coovally AI模型快速验证26 分钟前
农田扫描提速37%!基于检测置信度的无人机“智能抽查”路径规划,Coovally一键加速模型落地
深度学习·算法·yolo·计算机视觉·transformer·无人机
媒体人8881 小时前
GEO 优化专家孟庆涛:技术破壁者重构 AI 时代搜索逻辑
大数据·人工智能
小菜AI科技1 小时前
Windsurf 评测:这款 人工智能 IDE 是你需要的颠覆性工具吗?
人工智能
RaymondZhao341 小时前
【全面推导】策略梯度算法:公式、偏差方差与进化
人工智能·深度学习·算法·机器学习·chatgpt
yzx9910132 小时前
小程序开发APP
开发语言·人工智能·python·yolo
AKAMAI2 小时前
通过自动化本地计算磁盘与块存储卷加密保护数据安全
人工智能·云计算
无规则ai2 小时前
动手学深度学习(pytorch版):第四章节—多层感知机(5)权重衰减
人工智能·pytorch·python·深度学习
zskj_zhyl3 小时前
家庭健康能量站:微高压氧舱结合艾灸机器人,智享双重养生SPA
人工智能·科技·安全·机器人
朗迪锋3 小时前
数字孪生 :提高制造生产力的智能方法
大数据·人工智能·制造
网安INF3 小时前
【论文阅读】-《HopSkipJumpAttack: A Query-Efficient Decision-Based Attack》
论文阅读·人工智能·深度学习·网络安全·对抗攻击