深度学习之线性代数预备知识点

|----------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 概念 | 定义 | 公式/案例 |
| 标量(Scalar) | 一个单独的数值,表示单一的量。 | 例如:5, 3.14, -2 |
| 向量 (Vector) | 一维数组,表示具有方向和大小的量。 | ,表示三维空间中的向量 |
| 模(Magnitude) | 向量的长度,也称为范数(通常为L2范数)。 | 向量,其模: |
| 范数 (Norm) | 向量的大小,常见范数有L1范数(绝对值之和)和L2范数(欧几里得范数,平方和的开方)。 | L1范数 |
| 单位向量 (Unit Vector) | 模为1的向量,表示纯粹的方向。 | |
| 内积 (点乘) | 两个向量相乘得到的标量,反映两个向量的相似度。 | ,例如 |
| 外积(叉乘) | 两个向量相乘得到的矩阵,表示向量之间的关系。 | ,例如, |
| 矩阵 (Matrix) | 二维数组,表示数据的多维结构,行和列的排列组合。 | ,表示是一个2*2的矩阵 |
| 矩阵转置(Transpose) | 矩阵的行列互换。 | |
| 矩阵乘法(Multiplication) | 矩阵按特定规则进行乘法运算,行向量与列向量的点积。 | |
| 乘法的性质 | 矩阵乘法满足结合律、但不满足交换律。 | 例如,但 |
| 张量 (Tensor) | 高维数组,表示多维数据的结构,扩展了标量、向量和矩阵的概念。 | 例如,一个三阶张量可以表示为,每个A矩阵 |

  • 向量的内积 :在深度学习中,内积用于衡量输入向量与权重向量的相似性。例如,在一个简单的神经元中,输入权重,其输出为,即输入与权重的内积结果。

  • 矩阵乘法 :在神经网络的全连接层中,输入向量通过权重矩阵进行矩阵乘法,从而生成输出。假设输入向量,权重矩阵,输出为y=W×x。

相关推荐
nju_spy16 小时前
论文阅读 - 深度学习端到端解决库存管理问题 - 有限时间范围内的多周期补货问题(Management Science)
人工智能·深度学习·动态规划·端到端·库存管理·两阶段pto·多周期补货问题
u***j32416 小时前
深度学习实践
人工智能·深度学习
极客BIM工作室16 小时前
LSTM门控结构:乘法设计的必然性分析
rnn·深度学习·lstm
r***d86516 小时前
深度学习挑战
人工智能·深度学习
龙腾AI白云16 小时前
国内外具身智能VLA模型深度解析(3)
深度学习·数据挖掘
新加坡内哥谈技术16 小时前
迈向星际 QUIC 流量
人工智能
受之以蒙16 小时前
具身智能的“任督二脉”:用 Rust ndarray 打通数据闭环的最后一公里
人工智能·笔记·rust
强盛小灵通专卖员16 小时前
Airsim仿真、无人机、Lidar深度相机、DDPG深度强化学习
人工智能·无人机·sci·研究生·ei会议·中文核心期刊·小论文
道一云黑板报16 小时前
大规模低代码系统推荐:知识图谱与 GNN 的性能优化策略
深度学习·神经网络·低代码·性能优化·知识图谱·推荐算法
小oo呆16 小时前
【自然语言处理与大模型】BERTopic主题建模
人工智能·自然语言处理