深度学习之线性代数预备知识点

|----------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 概念 | 定义 | 公式/案例 |
| 标量(Scalar) | 一个单独的数值,表示单一的量。 | 例如:5, 3.14, -2 |
| 向量 (Vector) | 一维数组,表示具有方向和大小的量。 | ,表示三维空间中的向量 |
| 模(Magnitude) | 向量的长度,也称为范数(通常为L2范数)。 | 向量,其模: |
| 范数 (Norm) | 向量的大小,常见范数有L1范数(绝对值之和)和L2范数(欧几里得范数,平方和的开方)。 | L1范数 |
| 单位向量 (Unit Vector) | 模为1的向量,表示纯粹的方向。 | |
| 内积 (点乘) | 两个向量相乘得到的标量,反映两个向量的相似度。 | ,例如 |
| 外积(叉乘) | 两个向量相乘得到的矩阵,表示向量之间的关系。 | ,例如, |
| 矩阵 (Matrix) | 二维数组,表示数据的多维结构,行和列的排列组合。 | ,表示是一个2*2的矩阵 |
| 矩阵转置(Transpose) | 矩阵的行列互换。 | |
| 矩阵乘法(Multiplication) | 矩阵按特定规则进行乘法运算,行向量与列向量的点积。 | |
| 乘法的性质 | 矩阵乘法满足结合律、但不满足交换律。 | 例如,但 |
| 张量 (Tensor) | 高维数组,表示多维数据的结构,扩展了标量、向量和矩阵的概念。 | 例如,一个三阶张量可以表示为,每个A矩阵 |

  • 向量的内积 :在深度学习中,内积用于衡量输入向量与权重向量的相似性。例如,在一个简单的神经元中,输入权重,其输出为,即输入与权重的内积结果。

  • 矩阵乘法 :在神经网络的全连接层中,输入向量通过权重矩阵进行矩阵乘法,从而生成输出。假设输入向量,权重矩阵,输出为y=W×x。

相关推荐
lisw056 分钟前
AI与AI代理:概念、区别与联系!
人工智能·机器学习·人工智能代理
无心水9 分钟前
【任务调度:数据库锁 + 线程池实战】1、多节点抢任务?SELECT FOR UPDATE SKIP LOCKED 才是真正的无锁调度神器
人工智能·分布式·后端·微服务·架构
本是少年17 分钟前
深度学习系列(一):经典卷积神经网络(LeNet)
人工智能·深度学习·cnn
王解33 分钟前
第一篇:初识 nanobot —— 一个微型 AI Agent 的诞生
人工智能·nanobot
瓦力的狗腿子1 小时前
AI技术的发展为卫星控制系统研发带来的影响与思考
人工智能
人工智能AI技术1 小时前
YOLOv9目标检测实战:用Python搭建你的第一个实时交通监控系统
人工智能
小雨中_1 小时前
2.7 强化学习分类
人工智能·python·深度学习·机器学习·分类·数据挖掘
拯救HMI的工程师2 小时前
【拯救HMI】工业HMI字体选择:拒绝“通用字体”,适配工业场景3大要求
人工智能
lczdyx2 小时前
【胶囊网络】01-2 胶囊网络发展历史与研究现状
人工智能·深度学习·机器学习·ai·大模型·反向传播
AomanHao2 小时前
【ISP】基于暗通道先验改进的红外图像透雾
图像处理·人工智能·算法·计算机视觉·图像增强·红外图像