深度学习之线性代数预备知识点

|----------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 概念 | 定义 | 公式/案例 |
| 标量(Scalar) | 一个单独的数值,表示单一的量。 | 例如:5, 3.14, -2 |
| 向量 (Vector) | 一维数组,表示具有方向和大小的量。 | ,表示三维空间中的向量 |
| 模(Magnitude) | 向量的长度,也称为范数(通常为L2范数)。 | 向量,其模: |
| 范数 (Norm) | 向量的大小,常见范数有L1范数(绝对值之和)和L2范数(欧几里得范数,平方和的开方)。 | L1范数 |
| 单位向量 (Unit Vector) | 模为1的向量,表示纯粹的方向。 | |
| 内积 (点乘) | 两个向量相乘得到的标量,反映两个向量的相似度。 | ,例如 |
| 外积(叉乘) | 两个向量相乘得到的矩阵,表示向量之间的关系。 | ,例如, |
| 矩阵 (Matrix) | 二维数组,表示数据的多维结构,行和列的排列组合。 | ,表示是一个2*2的矩阵 |
| 矩阵转置(Transpose) | 矩阵的行列互换。 | |
| 矩阵乘法(Multiplication) | 矩阵按特定规则进行乘法运算,行向量与列向量的点积。 | |
| 乘法的性质 | 矩阵乘法满足结合律、但不满足交换律。 | 例如,但 |
| 张量 (Tensor) | 高维数组,表示多维数据的结构,扩展了标量、向量和矩阵的概念。 | 例如,一个三阶张量可以表示为,每个A矩阵 |

  • 向量的内积 :在深度学习中,内积用于衡量输入向量与权重向量的相似性。例如,在一个简单的神经元中,输入权重,其输出为,即输入与权重的内积结果。

  • 矩阵乘法 :在神经网络的全连接层中,输入向量通过权重矩阵进行矩阵乘法,从而生成输出。假设输入向量,权重矩阵,输出为y=W×x。

相关推荐
亿信华辰软件几秒前
构建智慧数据中台,赋能饮料集团全链路数字化转型新引擎
大数据·人工智能·云计算
大模型实验室Lab4AI11 分钟前
西北工业大学 StereoMV2D 突破 3D 物体检测深度难题,精度与效率兼得
人工智能·计算机视觉·目标跟踪
旷野说20 分钟前
打造 36Gbps 超高速本地机器学习开发环境
人工智能·机器学习
陈天伟教授38 分钟前
人工智能应用-机器视觉:绘画大师 04.基于风格迁移的绘画大师
人工智能·神经网络·数码相机·生成对抗网络·dnn
爱打代码的小林41 分钟前
opencv基础(轮廓检测、绘制与特征)
人工智能·opencv·计算机视觉
AI浩1 小时前
面向无监督多场景行人重识别的图像-文本知识建模
人工智能·目标检测
Takoony1 小时前
深度学习多卡训练必须使用偶数张GPU吗?原理深度解析
人工智能·深度学习
翱翔的苍鹰1 小时前
通俗、生动的方式 来讲解“卷积神经网络(CNN)
人工智能·神经网络·cnn
Irene.ll1 小时前
DAY31 文件的拆分方法和规范
人工智能·机器学习
真上帝的左手1 小时前
26. AI-大语言模型应用发展
人工智能