【网络】TCP/IP 五层网络模型:网络层

最核心的就是 IP 协议,是一个相当复杂的协议

TCP 详细展开讲解,是因为 TCP 确实在开发中非常关键,经常用到,IP 则不同,和普通程序猿联系比较浅。和专门开发网络的程序猿联系比较紧密(开发路由器,开发交换机,开发防火墙...)

IP 协议总览

网络层的 IP 协议,主要干两个事:

  1. 地址管理:需要指定一套规章制度,能够把互联网上的各种用来上网的设备所在的地址都管理起来==>IP 地址
  2. 路由选择:在进行网络通信的时候,对数据报传输的路径进行的规划

IP 协议报头结构

4位版本

实际上只有两个取值

  • 4 ==> IPv4(主流)
  • 6 ==> IPv6

IPv2IPv5 在实际中是没有的,可能是理论上/实验室中存在

4位首部长度

IP 协议报头也是变长 的,因为选项个数不确定,所以报头长度也不确定。因此就需要使用 4 位首部长度进行区分

4 位首部长度 范围:0~15,所以报头长度 *4 才是实际的长度

  • 当报头长度为 15,则实际报头长度为 15*4=60

8位服务类型

type of service

3位优先权字段(已经弃⽤),4位 TOS 字段 ,和 1位保留字段(必须置为 0)。4位 TOS 分别表⽰:

  • 最⼩延时:从 A 到 B 的时间消耗更少
  • 最⼤吞吐量:从 A 到 B,单位时间内传输的数量更多
  • 最⾼可靠性:数据丢包概率更小(IP 协议并不想 TCP 那样有严格的可靠性)
  • 最⼩成本 :设备上消耗的资源更少
    这四者相互冲突,只能选择⼀个。其中一个为 1,那么其他的都得为 0。IP 协议拥有变身技能!

16位总长度

IP 数据报的长度

UDP 也是 16 位(2 个字节,64KB)。但并非 IP 协议报头最多能携带的数据就是 64KB

IP 协议内置了拆包组包 机制,单个 IP 数据报确实没法超过 64KB,但是不代表 IP 协议不能传输超过 64KB 的数据。IP 协议会自动把大的数据包,拆成多个 IP 数据报携带传输,在接收方再进行拼装

装修的时候,装柜子/床,进不了电梯,也进不了房门,怎么办?

  • 厂家发的货就不是拼装好的柜子和床,而是零件
  • 我们就可以先把零件搬进去,然后再组装起来

16位标识、3位标志、13位片偏移

IP 协议会自动拆包,统一个载荷的数据,会被分成多分,交给多个 IP 数据报来携带。多个 IP 数据包之间:

  • 16位标识 是相同的数值,

  • 13位片偏移 决定组包时候数据报的位置

    • 网络传输数据的时候会存在后发先至的情况,所以不能按照发送顺序就确定接受顺序
  • 3位标志 只有两位有效(有一位是保留位,现在不用,以后可能用,先占个位置)

    • 其中一个标识这个包是否需要组包(是否是拆包的一部分)
    • 另一个表示当前包是否是组包中的最后一个单位

最后组包的时候,根据 16 位标识 确定哪些数据包放在一组,然后根据 13位片偏移 决定顺序,最后根据 3位标志位 决定是不是最后一个

如果就是想使用 UDP 实现传输找过 64KB 的数据,该怎么做呢?

  • 此处参考 IP 协议
  • 在应用层编写代码的时候
    • 引入"标识",约定标识相同的数据,就应该进行组包
    • 引入"片偏移",约定组包的时候的先后顺序
    • 引入"标志位",区分是否需要组包,标识最后一个包

8位生存时间

描述了一个数据包在网络上存活的最长时间

  • 假设构造一个 IP 数据报,目的 IP 写错了(不存在的 IP 地址),结果这个数据包就在网络上传输了很久,也没有达到目的地。
  • 如果让这样的数据包无限传输的话,就会消耗很多网络资源
  • 这样的数据包存在一个两个还好,要是存在很多呢?总不能让这些数据包把路全部堵死了吧

TTL 就是约定了一个传输时间的上限,当达到上限之后,数据包就会被自动丢弃掉

  • 它的单位不是 s 或者 min,而是次数(经过路由器转发的次数)

发送一个 IP 数据报的时候,会有一个初识的 TTL 的值(32,64,128...)。数据包每次经过一个路由器转发,TTL 就会 -1(经过交换机不减)。一旦 TTL 减到 0 了,此时这个数据包就会被当前的路由器直接丢弃掉


  • ping命令:用来检测网络的连通性
  • 输入命令后,我们的电脑就会给百度发送一个数据包,百度收到这个 ping 命令的数据包之后,就会返回一个响应
    • 我们发送了四次 32 字节的数据包
    • 几十毫秒,说明网络比较好;上百,上千毫秒说明网络比较卡
    • 咱们初始 TTL 应该是 64,中间经过了 12 个路由器的转发,最终到达了百度

64 这样的 TTL 够用吗?

  • 正常情况下,64 这样的 TTL非常充裕
    • 六度空间理论(社会科学中的理论)
  • 而且发送数据的时候,还有 128 这样的 TTL

8位协议

IP 数据包中,携带的载荷,是哪种传输层协议的数据包

通过这里的不同数值,感知到接下来要把数据给 TCP 解析,还是 UDP 解析,还是其他协议解析

  • 类似于 TCP/UDP 报头中的"端口号 ",决定要将这个数据交个哪个应用程序,也就是要将这个数据交给哪个应用层的具体协议进行处理
    现在 IP 协议要先交给传输层,交给哪个传输层协议进行处理,就通过 8位协议 进行标识

具体的数值这里不谈,这里暂时只聊作用

16位首部校验和

验证数据在传输中是否出错(只是针对首部,IP 报头)

  • 载荷部分 TCP/UDP 都有自己的校验和,此处就不需要再次进行验证了

32源 IP 地址、32位目的 IP 地址

IP 数据报中最关键的信息:数据包从哪里来,到哪里去


  • 输入:ipconfig,就可以看到当前机器的 ip 地址
  • IP 地址是 32 位的整数
    • 这是一个很大的数字,不方便人进行阅读和理解
    • 就把 32 位(4 字节)通过 3 个圆点分隔开,每个部分是一个字节,范围 0-255(只要有一个部分不在这个范围,就可以认为是一个非法/错误的 IP)
    • 这就是"点分十进制"写法
    • 但计算机在底层处理这些数据的时候,都是当成 32 位的 IP 地址来处理的

IP 地址,用来标识网络上的一个设备。期望 IP 地址是唯一的

  • 32 位表示的范围:0---42亿9千万
  • 在现在的社会背景下,所存在的需要 IP 地址的设备肯定是超过了这个范围的

地址管理

就是为了解决 IP 不够用的问题


方案一、动态分配 IP 地址

一个设备上网就分配 IP,不上网就先不分配(权宜之计)


方案二、NAT

网络地址转换


以一当千,使用一个 IP,代表一大波设备

NAT 把 IP 地址分为两大类:

  1. 内网 IP / 私网 IP(重要)

    • 10.*
    • 172.16~172.31.*
    • 192.168.*
  2. 外网 IP / 公网 IP:除了私网 IP 就都是公网 IP

要求公网 IP 必须是唯一的,但是私网 IP 在不同的局域网中是允许重复的

  • 一台电脑上,有几个网卡就有几个 IP 地址,虚拟出来的网卡也算(软件模拟的网卡)
  • 一般笔记本都会有:有线网卡和无线网卡,具体哪个生效就看你当前是用网线上网还是 WiFi 上网

NAT 网络地址转换

一个设备在进行上网的时候,IP 数据报中的 IP 地址,就会被 NAT 设备(通常就是路由器)进行自动修改

  1. 同一个局域网内,主机 A 访问主机 B

    不会涉及到 NAT 机制

  2. 公网上的设备 A,访问公网上的设备 B

    不会涉及到 NAT 机制

  3. 不同局域网中的主机 A 访问另一个局域网的主机 B

    NAT 机制中,是不允许的

之前写 UDP 回服务器的时候,我这台电脑上启动 UDP 服务器,你使用 UDP 客户端是不能访问的

  • 因为我处于我这里的局域网,你处于你们那的局域网
  • NAT 机制下,一个局域网中的主机 A 是无法访问领一个主机
  1. 局域网内部的设备 A,访问公网上的设备 B
    NAT 机制主要就是针对这个情况进行生效

但凡是搭建一个服务器给别人使用,都是需要公网 IP 的

  • 单个设备
  • 此时我的电脑要想访问 CCtalk 这个服务器,就要构造一个 IP 数据报
  • 数据包到达运营商路由器(NAT 设备)之后,就会进行网络地址转换
    • 将源 IP 地址由我的 IP 地址变为运营商公网 IP 地址
    • 所以 CCtalk 看到的数据包,源 IP 不是 192.168.111.222,而是 1.2.3.4

为什么进行这样的 IP 地址的替换就能提高 IP 地址的利用率呢?

  • 其实日常上网的设备:手机、电脑、电视、空调等绝大部分都是在不同的局域网中
  • 此时就相当于一个公网 IP 就可以代表一大批设备

运营商的公网 IP,不是服务一个设备,而是服务一个片区,可能有上万个设备。此时一个 IP 就代表了上万个设备,此时 IP 的利用率就大大提高了

  • 就相当与你在网上买东西,写的收货地址是:北京市海淀区清华园清华大学
  • 这个地址对应着几万个人,而不是你一个人

CCtalk 的响应如何正确地返回到我的电脑上呢?

  • CCtalk 要构造一个响应数据包
  • 达到运营商路由器之后,里面的目的 IP 就会被替换回我的电脑 IP
  • 之后就能顺利达到我的电脑
    运营商路由器这样的 NAT 设备能在发出和收回的时候都进行 IP 替换,就能使内网设备和外网设备进行连接

  • 多个设备(同一个局域网内)

在网络通信中,不仅仅只有 IP 信息,还有一个关键的是端口号

  • 端口号本来是来区分同一个主机上不同的应用程序
  • 在 NAT 中,就可以用于区分不同主机上不同的应用程序
  • 在我的和你的数据包到达运营商路由器之后,要进行 IP 替换。同时运营商路由器会记录一个映射关系:
旧 IP 旧端口 新 IP 新端口
192.168.111.222 1234 1.2.3.4 1234
192.168.333.444 1235 1.2.3.4 1235

返回数据包的时候

  • 此时,CCtalk 服务器返回的响应数据也是有 IP,也是有端口
  • 端口就决定这个返回值是给我还是给你
    • 运营商路由器收到这个目的端口后,就会看原来记录的映射关系
    • 根据传过来的目的端口,运营商路由器可以知道是哪个 IP 传过来的
    • 之后再将这个目的端口对应的 IP 替换上去就可以传到对应的设备了
  • 目的端口是 1234,就是传给我
  • 目的端口是 1235,就是传给你

此处就是通过端口号,来区分不同主机的不同程序

是否可能出现:你和我的电脑上 CCtalk 源端口恰好是一样的?

  • 这个概率非常小;客户端这里的源端口,是操作系统随机分配的空闲端口
  • 就算你的端口号也是 1234,但是路由器建立映射关系表的时候,可以把端口号也替换成不重复的其他端口
    NAT 既能替换 IP 中的 IP,也能替换 TCP/UDP 中的端口。这个就是 NAPT

我们当前的网络世界,主要就是 NAT 机制的支撑


NAT 机制的缺点
  • 网络环境太复杂了
  • 替换过程中,每一层路由器都需要维护映射关系
  • 每次转发数据,都要查询映射关系
  • 每个步骤都是开销

方案三、IPv6

从根本上解决了 IP 地址不够用的问题

  • IPv4 使用 32 位 4 个字节表示 IP 地址
  • IPv6 使用 128 位 16 个字节表示 IP 地址
    16 个字节表示的 IP 地址数目,比 4 个字节的 IP 地址大: 2 128 − 2 32 2^{128}-2^{32} 2128−232。这个地址空间非常大,大到可以给地球上的每一粒沙子都分配一个唯一的 IPv6 地址

IPv6 提出的时间是在上个世纪 90 年代,时间上和 NAT 其实是差不多的。之所以 IPv6 举步维艰,因为 IPv6 和 IPv4 不兼容!

  • 要想使用 IPv6,就要更换新的设备(能支持 IPv6 的设备)
  • IPv6 提出的当年,显然是不具备这样的条件的。换设备就得花钱,但花钱了网速又不会变快(用户感知不到好处)
    NAT 机制,只要给路由器设备更新升级软件即可,硬件不需要改变(成本非常低)
网段划分(组网)

组网的时候,就需要我们针对每个上网设备 IP 地址(包括路由器的 IP)进行设置

我没设置过,好像插上网线就能上网,这是为什么呢?

对于家庭网络这种比较简单的网络结构来说,路由器都有"自动分配 IP"的功能(DHCP)。但在公司、学校、商场、宾馆... 这些更复杂的场景,网络需求更复杂,就需要进行手动设置了。

子网掩码

IP 地址,32 位整数,一分为二

  • 左半部分:网络号
  • 右半部分:主机号
    只看 IP 地址是看不出来的,需要通过"子网掩码"区分出那里是网络号,哪里是主机号

子网掩码也是 32 位整数。左半部分都是 1,右半部分都是 0(二进制数)

  • 在这里 255.255.0.0 就是 11111111.11111111.00000000.00000000
  • 所以上面 IP 地址中,10.61 就是网络号,15.237 就是主机号

网络中规定:

  • 同一个局域网中的设备,网络号必须相同,主机号必须不同

在这个局域网中,某个设备号不相同的话,就无法上网;某个设备的网络号虽然相同,但主机号和别的设备重复,也无法上网

  • 两个相邻的局域网,网络号必须不同

路由器上有两种网络接口:

  • LAN
  • WAN

此时这个路由器就连接了两个局域网。这两个局域网的 IP 网络号是不能重复的。一旦重复,也上不了网
同一个路由器连接的两个局域网,就叫相邻局域网

LAN 口接设备(你的电脑、电视...),WAN 口接上层路由器

ABCDE 五类网络
  • AB 类,主机号太多了,实际上一般没有这么大的局域网
  • IP 地址浪费的比较多
  • A类:0.0.0.0~127.255.255.255
  • B类:128.0.0.0~191.255.255.255
  • C类:192.0.0.0~223.255.255.255
  • D类:224.0.0.0~239.255.255.255
  • E类:240.0.0.0~247.255.255.255
特殊的 IP 地址
1. 主机号位全 0(二进制)

此时这个 IP 就是表示当前网段(相当于网络号)

因此,给局域网中的某个设备分配 IP 地址的时候,不能把主机号全设为 0


2. 主机号为全 1

比如子网掩码为 255.255.255.0,IP 地址为 192.169.0.255。这里我们可以看到,IP 地址前三个字节为网络号,后一个字节 255 为主机号(11111111

主机号为 11111111 就是广播 IP,往这个 IP 地址上发送数据包,就相当与给整个局域网中所有设备都发了一次数据包(针对一个局域网中的对象)。我们很多看到的"业务上的广播",都是通过应用层编写代码来实现的,而不是借助广播 IP

以 CCtalk 为例,CCtalk 会维护出很多的"教室信息",你上课的时候就是在其中一个教室,一个教室会涉及到很多同学(教室数据中就包含所有同学的数据)。此时,老师进行直播的时候,老师那边的画面和声音就会发送给 CCtalk 服务器对应的教室那里,CCtalk 服务器就会根据教室中同学的列表,依次遍历每个列表元素,把数据发送出去

机房上课、地震预警大概率都是这样的实现原理
什么时候是真用到广播 IP?(手机,电视投屏)

  • 手机视频有一个投屏按钮(TV),按下按钮,弹出来一个设备列表,选择投屏到哪个设备上(要求手机和电视得在同一个局域网中)

手机上如何知道局域网中有多少设备允许投屏,这样的功能就可以基于广播 IP 实现

  • 手机触发投屏按钮的时候,往对应的广播 IP 上发送一个数据包(UDP)(TCP 不支持广播,只能一对一)
  • 如果收到这个数据包的设备不具有投屏功能,就不吱声;如果支持,就会返回一个响应,告知我是什么设备,我的 IP 是什么
3. 环回 IP(loopback)

127.*


自发自收,给这个 IP 发送一个数据,设备就会从这个 IP 上再收到同一个数据(自己发给自己)

你踢球的时候,自己射门又自己补射(自射自补)

使用环回 IP 一般进行测试。写的网络程序,大多数情况都是为了跨主机通信。但在此之前,往往需要先自行测试,一台测试客户端和服务器之间能否正常交互

一般使用的环回 IP 是 127.0.0.1,虽然其他的 127 开头的 IP 也是可以的,但是很少见

路由选择

网络是复杂的网状结构,从一个节点到另一个节点之间,可能会存在很多条线路(交通网)

你想从北京去上海,你打开高德地图,会给你提供很多条路线让你选择

  • 高德地图的路由选择和 IP 协议的路由选择是有本质区别的
  • 高德地图知道路线的全貌,给你计算出来的路线就是"最优解"(用时最短/成本最低/最少换乘)
  • IP 协议的路由选择,每个路由器是无法知道网络结构的全貌,只能知道其中的一小部分(每个路由器只知道它附近的设备都是怎样的情况),只能得到"较优解"

基本情况

你想从陕科大去邮电大学

  1. 我从陕科大出发,在校门口问 A:邮电大学怎么走?A 表示他也不知道。

    但虽然他不知道,但是他大概清楚邮电在南郊,而我们现在在北郊,得先往南走

    A 就建议我们先去校门口坐 336 公交,往南先走一段再说

  2. 上了 336 之后,我又问 B:邮电怎么走?B 表示他也不知道

    B 也大概清楚,邮电在南郊

    B 建议我继续坐 336 ,到运动公园下车,换乘地铁二号线

  3. 到了运动公园,坐上地铁了,又问 C:邮电怎么走?

    C 表示他也不太清楚,大概知道邮电在很南的地方

    C 就建议我继续坐二号线往南走,坐到小寨(相当于二号线的中点),之后再问问

  4. 到了小寨,又问 D:邮电怎么走?

    D 表示他也不太知道,大概知道,应该继续坐二号线,到航天城,让我到了航天城再说

  5. 到了航天城,又问 E:邮电怎么走?

    E 就告诉我,往西走大概两条街,然后再往北拐半条街就到了

  6. 最终到达邮电


每次在进行问路的时候,每个人都是没法知道西安市的完整地图详细信息的,只能知道其中的一部分信息。但他能给我指出一个方向,我按照这个方向走,就会越来越接近,当足够接近的时候,总是可以遇到一个人能告诉我精确目标地点的。

这就和 IP 协议路由选择非常相似。

  • 上述 ABCDE 这几个问路的人,就相当于路由器。每个路由器都不知道整体网络结构的全貌,但是能够知道其中的一部分。知道的这一部分信息,被称为"路由表 ",路由器内部维护的重要的数据结构,类似于 hashkey 就相当于 IP 地址(网络号),value 就是对应的网络接口(往哪个方向走)
  • IP 数据报达到路由器,就要进行路由查表操作:查一查 IP 数据报中的目的 IP 在路由表中是否存在
    • 如果查到了,就是按照路由表指定的方向继续转发即可
    • 如果没有查到,路由表会有一个"默认的表项"(下一跳)
    • "下一跳"指定了一个更高层级的路由器(认识的设备范围更广)
    • 这个路由器要是还找不到,就继续"下一跳",找到更高层级的路由器(认识的设备范围更广)

真是的转发过程,会更加复杂

  1. 路由表里面的东西是怎么来的?
  • 自动获取的(路由表生成算法)
  • 手工配置(网络管理员,手动设置)
  1. 真实的网络结构(尤其是广域网的网络结构是怎样的)
    感兴趣可以去 B 站搜一下,中国电信/中国移动/中国联通网络架构
相关推荐
小狮子安度因14 分钟前
边缘智能-大模型架构初探
linux·网络
宇宙第一小趴菜1 小时前
探索网络世界:TCP/IP协议、Python Socket编程及日常生活比喻
网络·python·tcp/ip
新手嵌入式学习1 小时前
Modbus_tcp
网络·网络协议·tcp/ip
极术社区1 小时前
ResNeXt学习
开发语言·学习·计算机视觉·php
小宋10212 小时前
RabbitMQ:交换机详解(Fanout交换机、Direct交换机、Topic交换机)
服务器·网络·rabbitmq
hellojackjiang20112 小时前
开源即时通讯IM框架MobileIMSDK的H5端技术概览
网络·开源·即时通讯·im开发
yczykjyxgs2 小时前
PCDN技术如何保障网络安全?(贰)
服务器·网络·科技
qianer0_02 小时前
php实现kafka
kafka·php·linq
伪NChris4 小时前
机器学习的网络们
网络·人工智能·机器学习
zqh176736464695 小时前
注册信息安全专业人员(CISP)和网络安全的联系与区别
网络·安全·web安全