Inception【代码详解Pytorch version】

"""Contains the Inception V3 model, which is used for inference ONLY.

This file is mostly borrowed from torchvision/models/inception.py.

Inception model is widely used to compute FID or IS metric for evaluating

generative models. However, the pre-trained models from torchvision is slightly

different from the TensorFlow version

http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz

which is used by the official FID implementation

https://github.com/bioinf-jku/TTUR

In particular:

(1) The number of classes in TensorFlow model is 1008 instead of 1000.

(2) The avg_pool() layers in TensorFlow model does not include the padded zero.

(3) The last Inception E Block in TensorFlow model use max_pool() instead of

avg_pool().

Hence, to align the evaluation results with those from TensorFlow

implementation, we modified the inception model to support both versions. Please

use align_tf argument to control the version.

"""

import warnings

import torch

import torch.nn as nn

import torch.nn.functional as F

import torch.distributed as dist

from utils.misc import download_url

all = ['InceptionModel']

_MODEL_URL_SHA256 = {

This model is provided by torchvision, which is ported from TensorFlow.

'torchvision_official': (

'https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth',

'1a9a5a14f40645a370184bd54f4e8e631351e71399112b43ad0294a79da290c8' # hash sha256

),

# This model is provided by https://github.com/mseitzer/pytorch-fid
'tf_inception_v3': (
    'https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth',
    '6726825d0af5f729cebd5821db510b11b1cfad8faad88a03f1befd49fb9129b2'  # hash sha256
)

}

class InceptionModel(object):

"""Defines the Inception (V3) model.

This is a static class, which is used to avoid this model to be built
repeatedly. Consequently, this model is particularly used for inference,
like computing FID. If training is required, please use the model from
`torchvision.models` or implement by yourself.

NOTE: The pre-trained model assumes the inputs to be with `RGB` channel
order and pixel range [-1, 1], and will also resize the images to shape
[299, 299] automatically. If your input is normalized by subtracting
(0.485, 0.456, 0.406) and dividing (0.229, 0.224, 0.225), please use
`transform_input` in the `forward()` function to un-normalize it.
"""
models = dict()

@staticmethod
def build_model(align_tf=True):
    """Builds the model and load pre-trained weights.

    If `align_tf` is set as True, the model will predict 1008 classes, and
    the pre-trained weight from `https://github.com/mseitzer/pytorch-fid`
    will be loaded. Otherwise, the model will predict 1000 classes, and will
    load the model from `torchvision`.

    The built model supports following arguments when forwarding:

    - transform_input: Whether to transform the input back to pixel range
        (-1, 1). Please disable this argument if your input is already with
        pixel range (-1, 1). (default: False)
    - output_logits: Whether to output the categorical logits instead of
        features. (default: False)
    - remove_logits_bias: Whether to remove the bias when computing the
        logits. The official implementation removes the bias by default.
        Please refer to
        `https://github.com/openai/improved-gan/blob/master/inception_score/model.py`.
        (default: False)
    - output_predictions: Whether to output the final predictions, i.e.,
        `softmax(logits)`. (default: False)
    """
    if align_tf:
        num_classes = 1008
        model_source = 'tf_inception_v3'
    else:
        num_classes = 1000
        model_source = 'torchvision_official'

    fingerprint = model_source

    if fingerprint not in InceptionModel.models:
        # Build model.
        model = Inception3(num_classes=num_classes,
                           aux_logits=False,
                           init_weights=False,
                           align_tf=align_tf)

        # Download pre-trained weights.
        if dist.is_initialized() and dist.get_rank() != 0:
            dist.barrier()  # Download by chief.

        url, sha256 = _MODEL_URL_SHA256[model_source]
        filename = f'inception_model_{model_source}_{sha256}.pth'
        model_path, hash_check = download_url(url,
                                              filename=filename,
                                              sha256=sha256)
        state_dict = torch.load(model_path, map_location='cpu')
        if hash_check is False:
            warnings.warn(f'Hash check failed! The remote file from URL '
                          f'`{url}` may be changed, or the downloading is '
                          f'interrupted. The loaded inception model may '
                          f'have unexpected behavior.')

        if dist.is_initialized() and dist.get_rank() == 0:
            dist.barrier()  # Wait for other replicas.

        # Load weights.
        model.load_state_dict(state_dict, strict=False)
        del state_dict

        # For inference only.
        model.eval().requires_grad_(False).cuda()
        InceptionModel.models[fingerprint] = model

    return InceptionModel.models[fingerprint]

class Inception3(nn.Module):

def __init__(self, num_classes=1000, aux_logits=True, inception_blocks=None,
             init_weights=True, align_tf=True):
    super(Inception3, self).__init__()
    if inception_blocks is None:
        inception_blocks = [
            BasicConv2d, InceptionA, InceptionB, InceptionC,
            InceptionD, InceptionE, InceptionAux
        ]
    assert len(inception_blocks) == 7
    conv_block = inception_blocks[0]
    inception_a = inception_blocks[1]
    inception_b = inception_blocks[2]
    inception_c = inception_blocks[3]
    inception_d = inception_blocks[4]
    inception_e = inception_blocks[5]
    inception_aux = inception_blocks[6]

    self.aux_logits = aux_logits
    self.align_tf = align_tf
    self.Conv2d_1a_3x3 = conv_block(3, 32, kernel_size=3, stride=2)
    self.Conv2d_2a_3x3 = conv_block(32, 32, kernel_size=3)
    self.Conv2d_2b_3x3 = conv_block(32, 64, kernel_size=3, padding=1)
    self.Conv2d_3b_1x1 = conv_block(64, 80, kernel_size=1)
    self.Conv2d_4a_3x3 = conv_block(80, 192, kernel_size=3)
    self.Mixed_5b = inception_a(192, pool_features=32, align_tf=self.align_tf)
    self.Mixed_5c = inception_a(256, pool_features=64, align_tf=self.align_tf)
    self.Mixed_5d = inception_a(288, pool_features=64, align_tf=self.align_tf)
    self.Mixed_6a = inception_b(288)
    self.Mixed_6b = inception_c(768, channels_7x7=128, align_tf=self.align_tf)
    self.Mixed_6c = inception_c(768, channels_7x7=160, align_tf=self.align_tf)
    self.Mixed_6d = inception_c(768, channels_7x7=160, align_tf=self.align_tf)
    self.Mixed_6e = inception_c(768, channels_7x7=192, align_tf=self.align_tf)
    if aux_logits:
        self.AuxLogits = inception_aux(768, num_classes)
    self.Mixed_7a = inception_d(768)
    self.Mixed_7b = inception_e(1280, align_tf=self.align_tf)
    self.Mixed_7c = inception_e(2048, use_max_pool=self.align_tf)
    self.fc = nn.Linear(2048, num_classes)
    if init_weights:
        for m in self.modules():
            if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
                import scipy.stats as stats
                stddev = m.stddev if hasattr(m, 'stddev') else 0.1
                X = stats.truncnorm(-2, 2, scale=stddev)
                values = torch.as_tensor(X.rvs(m.weight.numel()), dtype=m.weight.dtype)
                values = values.view(m.weight.size())
                with torch.no_grad():
                    m.weight.copy_(values)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

@staticmethod
def _transform_input(x, transform_input=False):
    if transform_input:
        x_ch0 = torch.unsqueeze(x[:, 0], 1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5
        x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5
        x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5
        x = torch.cat((x_ch0, x_ch1, x_ch2), 1)
    return x

def _forward(self,
             x,
             output_logits=False,
             remove_logits_bias=False,
             output_predictions=False):
    # Upsample if necessary.
    if x.shape[2] != 299 or x.shape[3] != 299:
        if self.align_tf:
            theta = torch.eye(2, 3).to(x)
            theta[0, 2] += theta[0, 0] / x.shape[3] - theta[0, 0] / 299
            theta[1, 2] += theta[1, 1] / x.shape[2] - theta[1, 1] / 299
            theta = theta.unsqueeze(0).repeat(x.shape[0], 1, 1)
            grid = F.affine_grid(theta,
                                 size=(x.shape[0], x.shape[1], 299, 299),
                                 align_corners=False)
            x = F.grid_sample(x, grid,
                              mode='bilinear',
                              padding_mode='border',
                              align_corners=False)
        else:
            x = F.interpolate(
                x, size=(299, 299), mode='bilinear', align_corners=False)
    if x.shape[1] == 1:
        x = x.repeat((1, 3, 1, 1))

    if self.align_tf:
        x = (x * 127.5 + 127.5 - 128) / 128

    # N x 3 x 299 x 299
    x = self.Conv2d_1a_3x3(x)
    # N x 32 x 149 x 149
    x = self.Conv2d_2a_3x3(x)
    # N x 32 x 147 x 147
    x = self.Conv2d_2b_3x3(x)
    # N x 64 x 147 x 147
    x = F.max_pool2d(x, kernel_size=3, stride=2)
    # N x 64 x 73 x 73
    x = self.Conv2d_3b_1x1(x)
    # N x 80 x 73 x 73
    x = self.Conv2d_4a_3x3(x)
    # N x 192 x 71 x 71
    x = F.max_pool2d(x, kernel_size=3, stride=2)
    # N x 192 x 35 x 35
    x = self.Mixed_5b(x)
    # N x 256 x 35 x 35
    x = self.Mixed_5c(x)
    # N x 288 x 35 x 35
    x = self.Mixed_5d(x)
    # N x 288 x 35 x 35
    x = self.Mixed_6a(x)
    # N x 768 x 17 x 17
    x = self.Mixed_6b(x)
    # N x 768 x 17 x 17
    x = self.Mixed_6c(x)
    # N x 768 x 17 x 17
    x = self.Mixed_6d(x)
    # N x 768 x 17 x 17
    x = self.Mixed_6e(x)
    # N x 768 x 17 x 17
    if self.training and self.aux_logits:
        aux = self.AuxLogits(x)
    else:
        aux = None
    # N x 768 x 17 x 17
    x = self.Mixed_7a(x)
    # N x 1280 x 8 x 8
    x = self.Mixed_7b(x)
    # N x 2048 x 8 x 8
    x = self.Mixed_7c(x)
    # N x 2048 x 8 x 8
    # Adaptive average pooling
    x = F.adaptive_avg_pool2d(x, (1, 1))
    # N x 2048 x 1 x 1
    x = F.dropout(x, training=self.training)
    # N x 2048 x 1 x 1
    x = torch.flatten(x, 1)
    # N x 2048
    if output_logits or output_predictions:
        x = self.fc(x)
        # N x 1000 (num_classes)
        if remove_logits_bias:
            x = x - self.fc.bias.view(1, -1)
        if output_predictions:
            x = F.softmax(x, dim=1)
    return x, aux

def forward(self,
            x,
            transform_input=False,
            output_logits=False,
            remove_logits_bias=False,
            output_predictions=False):
    x = self._transform_input(x, transform_input)
    x, aux = self._forward(
        x, output_logits, remove_logits_bias, output_predictions)
    if self.training and self.aux_logits:
        return x, aux
    else:
        return x

class InceptionA(nn.Module):

def __init__(self, in_channels, pool_features, conv_block=None, align_tf=False):
    super(InceptionA, self).__init__()
    if conv_block is None:
        conv_block = BasicConv2d
    self.branch1x1 = conv_block(in_channels, 64, kernel_size=1)

    self.branch5x5_1 = conv_block(in_channels, 48, kernel_size=1)
    self.branch5x5_2 = conv_block(48, 64, kernel_size=5, padding=2)

    self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1)
    self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1)
    self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, padding=1)

    self.branch_pool = conv_block(in_channels, pool_features, kernel_size=1)
    self.pool_include_padding = not align_tf

def _forward(self, x):
    branch1x1 = self.branch1x1(x)

    branch5x5 = self.branch5x5_1(x)
    branch5x5 = self.branch5x5_2(branch5x5)

    branch3x3dbl = self.branch3x3dbl_1(x)
    branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
    branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)

    branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
                               count_include_pad=self.pool_include_padding)
    branch_pool = self.branch_pool(branch_pool)

    outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]
    return outputs

def forward(self, x):
    outputs = self._forward(x)
    return torch.cat(outputs, 1)

class InceptionB(nn.Module):

def __init__(self, in_channels, conv_block=None):
    super(InceptionB, self).__init__()
    if conv_block is None:
        conv_block = BasicConv2d
    self.branch3x3 = conv_block(in_channels, 384, kernel_size=3, stride=2)

    self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1)
    self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1)
    self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, stride=2)

def _forward(self, x):
    branch3x3 = self.branch3x3(x)

    branch3x3dbl = self.branch3x3dbl_1(x)
    branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
    branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)

    branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)

    outputs = [branch3x3, branch3x3dbl, branch_pool]
    return outputs

def forward(self, x):
    outputs = self._forward(x)
    return torch.cat(outputs, 1)

class InceptionC(nn.Module):

def __init__(self, in_channels, channels_7x7, conv_block=None, align_tf=False):
    super(InceptionC, self).__init__()
    if conv_block is None:
        conv_block = BasicConv2d
    self.branch1x1 = conv_block(in_channels, 192, kernel_size=1)

    c7 = channels_7x7
    self.branch7x7_1 = conv_block(in_channels, c7, kernel_size=1)
    self.branch7x7_2 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0, 3))
    self.branch7x7_3 = conv_block(c7, 192, kernel_size=(7, 1), padding=(3, 0))

    self.branch7x7dbl_1 = conv_block(in_channels, c7, kernel_size=1)
    self.branch7x7dbl_2 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0))
    self.branch7x7dbl_3 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0, 3))
    self.branch7x7dbl_4 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0))
    self.branch7x7dbl_5 = conv_block(c7, 192, kernel_size=(1, 7), padding=(0, 3))

    self.branch_pool = conv_block(in_channels, 192, kernel_size=1)
    self.pool_include_padding = not align_tf

def _forward(self, x):
    branch1x1 = self.branch1x1(x)

    branch7x7 = self.branch7x7_1(x)
    branch7x7 = self.branch7x7_2(branch7x7)
    branch7x7 = self.branch7x7_3(branch7x7)

    branch7x7dbl = self.branch7x7dbl_1(x)
    branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
    branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
    branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
    branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)

    branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
                               count_include_pad=self.pool_include_padding)
    branch_pool = self.branch_pool(branch_pool)

    outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]
    return outputs

def forward(self, x):
    outputs = self._forward(x)
    return torch.cat(outputs, 1)

class InceptionD(nn.Module):

def __init__(self, in_channels, conv_block=None):
    super(InceptionD, self).__init__()
    if conv_block is None:
        conv_block = BasicConv2d
    self.branch3x3_1 = conv_block(in_channels, 192, kernel_size=1)
    self.branch3x3_2 = conv_block(192, 320, kernel_size=3, stride=2)

    self.branch7x7x3_1 = conv_block(in_channels, 192, kernel_size=1)
    self.branch7x7x3_2 = conv_block(192, 192, kernel_size=(1, 7), padding=(0, 3))
    self.branch7x7x3_3 = conv_block(192, 192, kernel_size=(7, 1), padding=(3, 0))
    self.branch7x7x3_4 = conv_block(192, 192, kernel_size=3, stride=2)

def _forward(self, x):
    branch3x3 = self.branch3x3_1(x)
    branch3x3 = self.branch3x3_2(branch3x3)

    branch7x7x3 = self.branch7x7x3_1(x)
    branch7x7x3 = self.branch7x7x3_2(branch7x7x3)
    branch7x7x3 = self.branch7x7x3_3(branch7x7x3)
    branch7x7x3 = self.branch7x7x3_4(branch7x7x3)

    branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)
    outputs = [branch3x3, branch7x7x3, branch_pool]
    return outputs

def forward(self, x):
    outputs = self._forward(x)
    return torch.cat(outputs, 1)

class InceptionE(nn.Module):

def __init__(self, in_channels, conv_block=None, align_tf=False, use_max_pool=False):
    super(InceptionE, self).__init__()
    if conv_block is None:
        conv_block = BasicConv2d
    self.branch1x1 = conv_block(in_channels, 320, kernel_size=1)

    self.branch3x3_1 = conv_block(in_channels, 384, kernel_size=1)
    self.branch3x3_2a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1))
    self.branch3x3_2b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0))

    self.branch3x3dbl_1 = conv_block(in_channels, 448, kernel_size=1)
    self.branch3x3dbl_2 = conv_block(448, 384, kernel_size=3, padding=1)
    self.branch3x3dbl_3a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1))
    self.branch3x3dbl_3b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0))

    self.branch_pool = conv_block(in_channels, 192, kernel_size=1)
    self.pool_include_padding = not align_tf
    self.use_max_pool = use_max_pool

def _forward(self, x):
    branch1x1 = self.branch1x1(x)

    branch3x3 = self.branch3x3_1(x)
    branch3x3 = [
        self.branch3x3_2a(branch3x3),
        self.branch3x3_2b(branch3x3),
    ]
    branch3x3 = torch.cat(branch3x3, 1)

    branch3x3dbl = self.branch3x3dbl_1(x)
    branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
    branch3x3dbl = [
        self.branch3x3dbl_3a(branch3x3dbl),
        self.branch3x3dbl_3b(branch3x3dbl),
    ]
    branch3x3dbl = torch.cat(branch3x3dbl, 1)

    if self.use_max_pool:
        branch_pool = F.max_pool2d(x, kernel_size=3, stride=1, padding=1)
    else:
        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
                                   count_include_pad=self.pool_include_padding)
    branch_pool = self.branch_pool(branch_pool)

    outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
    return outputs

def forward(self, x):
    outputs = self._forward(x)
    return torch.cat(outputs, 1)

class InceptionAux(nn.Module):

def __init__(self, in_channels, num_classes, conv_block=None):
    super(InceptionAux, self).__init__()
    if conv_block is None:
        conv_block = BasicConv2d
    self.conv0 = conv_block(in_channels, 128, kernel_size=1)
    self.conv1 = conv_block(128, 768, kernel_size=5)
    self.conv1.stddev = 0.01
    self.fc = nn.Linear(768, num_classes)
    self.fc.stddev = 0.001

def forward(self, x):
    # N x 768 x 17 x 17
    x = F.avg_pool2d(x, kernel_size=5, stride=3)
    # N x 768 x 5 x 5
    x = self.conv0(x)
    # N x 128 x 5 x 5
    x = self.conv1(x)
    # N x 768 x 1 x 1
    # Adaptive average pooling
    x = F.adaptive_avg_pool2d(x, (1, 1))
    # N x 768 x 1 x 1
    x = torch.flatten(x, 1)
    # N x 768
    x = self.fc(x)
    # N x 1000
    return x

class BasicConv2d(nn.Module):

def __init__(self, in_channels, out_channels, **kwargs):
    super(BasicConv2d, self).__init__()
    self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
    self.bn = nn.BatchNorm2d(out_channels, eps=0.001)

def forward(self, x):
    x = self.conv(x)
    x = self.bn(x)
    return F.relu(x, inplace=True
相关推荐
周杰伦_Jay几秒前
简洁明了:介绍大模型的基本概念(大模型和小模型、模型分类、发展历程、泛化和微调)
人工智能·算法·机器学习·生成对抗网络·分类·数据挖掘·transformer
SpikeKing2 分钟前
LLM - 大模型 ScallingLaws 的指导模型设计与实验环境(PLM) 教程(4)
人工智能·llm·transformer·plm·scalinglaws
阿俊仔(摸鱼版)3 分钟前
Python 常用运维模块之Shutil 模块
linux·服务器·python·自动化·云服务器
MarsBighead5 分钟前
(二)PosrgreSQL: Python3 连接Pgvector出错排查
python·postgresql·向量数据库·pgvector
编码浪子12 分钟前
Transformer的编码机制
人工智能·深度学习·transformer
深蓝海拓25 分钟前
Pyside6(PyQT5)中的QTableView与QSqlQueryModel、QSqlTableModel的联合使用
数据库·python·qt·pyqt
IE0625 分钟前
深度学习系列76:流式tts的一个简单实现
人工智能·深度学习
GIS数据转换器30 分钟前
城市生命线安全保障:技术应用与策略创新
大数据·人工智能·安全·3d·智慧城市
无须logic ᭄33 分钟前
CrypTen项目实践
python·机器学习·密码学·同态加密
Channing Lewis1 小时前
flask常见问答题
后端·python·flask