Inception【代码详解Pytorch version】

"""Contains the Inception V3 model, which is used for inference ONLY.

This file is mostly borrowed from torchvision/models/inception.py.

Inception model is widely used to compute FID or IS metric for evaluating

generative models. However, the pre-trained models from torchvision is slightly

different from the TensorFlow version

http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz

which is used by the official FID implementation

https://github.com/bioinf-jku/TTUR

In particular:

(1) The number of classes in TensorFlow model is 1008 instead of 1000.

(2) The avg_pool() layers in TensorFlow model does not include the padded zero.

(3) The last Inception E Block in TensorFlow model use max_pool() instead of

avg_pool().

Hence, to align the evaluation results with those from TensorFlow

implementation, we modified the inception model to support both versions. Please

use align_tf argument to control the version.

"""

import warnings

import torch

import torch.nn as nn

import torch.nn.functional as F

import torch.distributed as dist

from utils.misc import download_url

all = ['InceptionModel']

_MODEL_URL_SHA256 = {

This model is provided by torchvision, which is ported from TensorFlow.

'torchvision_official': (

'https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth',

'1a9a5a14f40645a370184bd54f4e8e631351e71399112b43ad0294a79da290c8' # hash sha256

),

复制代码
# This model is provided by https://github.com/mseitzer/pytorch-fid
'tf_inception_v3': (
    'https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth',
    '6726825d0af5f729cebd5821db510b11b1cfad8faad88a03f1befd49fb9129b2'  # hash sha256
)

}

class InceptionModel(object):

"""Defines the Inception (V3) model.

复制代码
This is a static class, which is used to avoid this model to be built
repeatedly. Consequently, this model is particularly used for inference,
like computing FID. If training is required, please use the model from
`torchvision.models` or implement by yourself.

NOTE: The pre-trained model assumes the inputs to be with `RGB` channel
order and pixel range [-1, 1], and will also resize the images to shape
[299, 299] automatically. If your input is normalized by subtracting
(0.485, 0.456, 0.406) and dividing (0.229, 0.224, 0.225), please use
`transform_input` in the `forward()` function to un-normalize it.
"""
models = dict()

@staticmethod
def build_model(align_tf=True):
    """Builds the model and load pre-trained weights.

    If `align_tf` is set as True, the model will predict 1008 classes, and
    the pre-trained weight from `https://github.com/mseitzer/pytorch-fid`
    will be loaded. Otherwise, the model will predict 1000 classes, and will
    load the model from `torchvision`.

    The built model supports following arguments when forwarding:

    - transform_input: Whether to transform the input back to pixel range
        (-1, 1). Please disable this argument if your input is already with
        pixel range (-1, 1). (default: False)
    - output_logits: Whether to output the categorical logits instead of
        features. (default: False)
    - remove_logits_bias: Whether to remove the bias when computing the
        logits. The official implementation removes the bias by default.
        Please refer to
        `https://github.com/openai/improved-gan/blob/master/inception_score/model.py`.
        (default: False)
    - output_predictions: Whether to output the final predictions, i.e.,
        `softmax(logits)`. (default: False)
    """
    if align_tf:
        num_classes = 1008
        model_source = 'tf_inception_v3'
    else:
        num_classes = 1000
        model_source = 'torchvision_official'

    fingerprint = model_source

    if fingerprint not in InceptionModel.models:
        # Build model.
        model = Inception3(num_classes=num_classes,
                           aux_logits=False,
                           init_weights=False,
                           align_tf=align_tf)

        # Download pre-trained weights.
        if dist.is_initialized() and dist.get_rank() != 0:
            dist.barrier()  # Download by chief.

        url, sha256 = _MODEL_URL_SHA256[model_source]
        filename = f'inception_model_{model_source}_{sha256}.pth'
        model_path, hash_check = download_url(url,
                                              filename=filename,
                                              sha256=sha256)
        state_dict = torch.load(model_path, map_location='cpu')
        if hash_check is False:
            warnings.warn(f'Hash check failed! The remote file from URL '
                          f'`{url}` may be changed, or the downloading is '
                          f'interrupted. The loaded inception model may '
                          f'have unexpected behavior.')

        if dist.is_initialized() and dist.get_rank() == 0:
            dist.barrier()  # Wait for other replicas.

        # Load weights.
        model.load_state_dict(state_dict, strict=False)
        del state_dict

        # For inference only.
        model.eval().requires_grad_(False).cuda()
        InceptionModel.models[fingerprint] = model

    return InceptionModel.models[fingerprint]

class Inception3(nn.Module):

复制代码
def __init__(self, num_classes=1000, aux_logits=True, inception_blocks=None,
             init_weights=True, align_tf=True):
    super(Inception3, self).__init__()
    if inception_blocks is None:
        inception_blocks = [
            BasicConv2d, InceptionA, InceptionB, InceptionC,
            InceptionD, InceptionE, InceptionAux
        ]
    assert len(inception_blocks) == 7
    conv_block = inception_blocks[0]
    inception_a = inception_blocks[1]
    inception_b = inception_blocks[2]
    inception_c = inception_blocks[3]
    inception_d = inception_blocks[4]
    inception_e = inception_blocks[5]
    inception_aux = inception_blocks[6]

    self.aux_logits = aux_logits
    self.align_tf = align_tf
    self.Conv2d_1a_3x3 = conv_block(3, 32, kernel_size=3, stride=2)
    self.Conv2d_2a_3x3 = conv_block(32, 32, kernel_size=3)
    self.Conv2d_2b_3x3 = conv_block(32, 64, kernel_size=3, padding=1)
    self.Conv2d_3b_1x1 = conv_block(64, 80, kernel_size=1)
    self.Conv2d_4a_3x3 = conv_block(80, 192, kernel_size=3)
    self.Mixed_5b = inception_a(192, pool_features=32, align_tf=self.align_tf)
    self.Mixed_5c = inception_a(256, pool_features=64, align_tf=self.align_tf)
    self.Mixed_5d = inception_a(288, pool_features=64, align_tf=self.align_tf)
    self.Mixed_6a = inception_b(288)
    self.Mixed_6b = inception_c(768, channels_7x7=128, align_tf=self.align_tf)
    self.Mixed_6c = inception_c(768, channels_7x7=160, align_tf=self.align_tf)
    self.Mixed_6d = inception_c(768, channels_7x7=160, align_tf=self.align_tf)
    self.Mixed_6e = inception_c(768, channels_7x7=192, align_tf=self.align_tf)
    if aux_logits:
        self.AuxLogits = inception_aux(768, num_classes)
    self.Mixed_7a = inception_d(768)
    self.Mixed_7b = inception_e(1280, align_tf=self.align_tf)
    self.Mixed_7c = inception_e(2048, use_max_pool=self.align_tf)
    self.fc = nn.Linear(2048, num_classes)
    if init_weights:
        for m in self.modules():
            if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
                import scipy.stats as stats
                stddev = m.stddev if hasattr(m, 'stddev') else 0.1
                X = stats.truncnorm(-2, 2, scale=stddev)
                values = torch.as_tensor(X.rvs(m.weight.numel()), dtype=m.weight.dtype)
                values = values.view(m.weight.size())
                with torch.no_grad():
                    m.weight.copy_(values)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

@staticmethod
def _transform_input(x, transform_input=False):
    if transform_input:
        x_ch0 = torch.unsqueeze(x[:, 0], 1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5
        x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5
        x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5
        x = torch.cat((x_ch0, x_ch1, x_ch2), 1)
    return x

def _forward(self,
             x,
             output_logits=False,
             remove_logits_bias=False,
             output_predictions=False):
    # Upsample if necessary.
    if x.shape[2] != 299 or x.shape[3] != 299:
        if self.align_tf:
            theta = torch.eye(2, 3).to(x)
            theta[0, 2] += theta[0, 0] / x.shape[3] - theta[0, 0] / 299
            theta[1, 2] += theta[1, 1] / x.shape[2] - theta[1, 1] / 299
            theta = theta.unsqueeze(0).repeat(x.shape[0], 1, 1)
            grid = F.affine_grid(theta,
                                 size=(x.shape[0], x.shape[1], 299, 299),
                                 align_corners=False)
            x = F.grid_sample(x, grid,
                              mode='bilinear',
                              padding_mode='border',
                              align_corners=False)
        else:
            x = F.interpolate(
                x, size=(299, 299), mode='bilinear', align_corners=False)
    if x.shape[1] == 1:
        x = x.repeat((1, 3, 1, 1))

    if self.align_tf:
        x = (x * 127.5 + 127.5 - 128) / 128

    # N x 3 x 299 x 299
    x = self.Conv2d_1a_3x3(x)
    # N x 32 x 149 x 149
    x = self.Conv2d_2a_3x3(x)
    # N x 32 x 147 x 147
    x = self.Conv2d_2b_3x3(x)
    # N x 64 x 147 x 147
    x = F.max_pool2d(x, kernel_size=3, stride=2)
    # N x 64 x 73 x 73
    x = self.Conv2d_3b_1x1(x)
    # N x 80 x 73 x 73
    x = self.Conv2d_4a_3x3(x)
    # N x 192 x 71 x 71
    x = F.max_pool2d(x, kernel_size=3, stride=2)
    # N x 192 x 35 x 35
    x = self.Mixed_5b(x)
    # N x 256 x 35 x 35
    x = self.Mixed_5c(x)
    # N x 288 x 35 x 35
    x = self.Mixed_5d(x)
    # N x 288 x 35 x 35
    x = self.Mixed_6a(x)
    # N x 768 x 17 x 17
    x = self.Mixed_6b(x)
    # N x 768 x 17 x 17
    x = self.Mixed_6c(x)
    # N x 768 x 17 x 17
    x = self.Mixed_6d(x)
    # N x 768 x 17 x 17
    x = self.Mixed_6e(x)
    # N x 768 x 17 x 17
    if self.training and self.aux_logits:
        aux = self.AuxLogits(x)
    else:
        aux = None
    # N x 768 x 17 x 17
    x = self.Mixed_7a(x)
    # N x 1280 x 8 x 8
    x = self.Mixed_7b(x)
    # N x 2048 x 8 x 8
    x = self.Mixed_7c(x)
    # N x 2048 x 8 x 8
    # Adaptive average pooling
    x = F.adaptive_avg_pool2d(x, (1, 1))
    # N x 2048 x 1 x 1
    x = F.dropout(x, training=self.training)
    # N x 2048 x 1 x 1
    x = torch.flatten(x, 1)
    # N x 2048
    if output_logits or output_predictions:
        x = self.fc(x)
        # N x 1000 (num_classes)
        if remove_logits_bias:
            x = x - self.fc.bias.view(1, -1)
        if output_predictions:
            x = F.softmax(x, dim=1)
    return x, aux

def forward(self,
            x,
            transform_input=False,
            output_logits=False,
            remove_logits_bias=False,
            output_predictions=False):
    x = self._transform_input(x, transform_input)
    x, aux = self._forward(
        x, output_logits, remove_logits_bias, output_predictions)
    if self.training and self.aux_logits:
        return x, aux
    else:
        return x

class InceptionA(nn.Module):

复制代码
def __init__(self, in_channels, pool_features, conv_block=None, align_tf=False):
    super(InceptionA, self).__init__()
    if conv_block is None:
        conv_block = BasicConv2d
    self.branch1x1 = conv_block(in_channels, 64, kernel_size=1)

    self.branch5x5_1 = conv_block(in_channels, 48, kernel_size=1)
    self.branch5x5_2 = conv_block(48, 64, kernel_size=5, padding=2)

    self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1)
    self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1)
    self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, padding=1)

    self.branch_pool = conv_block(in_channels, pool_features, kernel_size=1)
    self.pool_include_padding = not align_tf

def _forward(self, x):
    branch1x1 = self.branch1x1(x)

    branch5x5 = self.branch5x5_1(x)
    branch5x5 = self.branch5x5_2(branch5x5)

    branch3x3dbl = self.branch3x3dbl_1(x)
    branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
    branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)

    branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
                               count_include_pad=self.pool_include_padding)
    branch_pool = self.branch_pool(branch_pool)

    outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]
    return outputs

def forward(self, x):
    outputs = self._forward(x)
    return torch.cat(outputs, 1)

class InceptionB(nn.Module):

复制代码
def __init__(self, in_channels, conv_block=None):
    super(InceptionB, self).__init__()
    if conv_block is None:
        conv_block = BasicConv2d
    self.branch3x3 = conv_block(in_channels, 384, kernel_size=3, stride=2)

    self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1)
    self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1)
    self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, stride=2)

def _forward(self, x):
    branch3x3 = self.branch3x3(x)

    branch3x3dbl = self.branch3x3dbl_1(x)
    branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
    branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)

    branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)

    outputs = [branch3x3, branch3x3dbl, branch_pool]
    return outputs

def forward(self, x):
    outputs = self._forward(x)
    return torch.cat(outputs, 1)

class InceptionC(nn.Module):

复制代码
def __init__(self, in_channels, channels_7x7, conv_block=None, align_tf=False):
    super(InceptionC, self).__init__()
    if conv_block is None:
        conv_block = BasicConv2d
    self.branch1x1 = conv_block(in_channels, 192, kernel_size=1)

    c7 = channels_7x7
    self.branch7x7_1 = conv_block(in_channels, c7, kernel_size=1)
    self.branch7x7_2 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0, 3))
    self.branch7x7_3 = conv_block(c7, 192, kernel_size=(7, 1), padding=(3, 0))

    self.branch7x7dbl_1 = conv_block(in_channels, c7, kernel_size=1)
    self.branch7x7dbl_2 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0))
    self.branch7x7dbl_3 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0, 3))
    self.branch7x7dbl_4 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0))
    self.branch7x7dbl_5 = conv_block(c7, 192, kernel_size=(1, 7), padding=(0, 3))

    self.branch_pool = conv_block(in_channels, 192, kernel_size=1)
    self.pool_include_padding = not align_tf

def _forward(self, x):
    branch1x1 = self.branch1x1(x)

    branch7x7 = self.branch7x7_1(x)
    branch7x7 = self.branch7x7_2(branch7x7)
    branch7x7 = self.branch7x7_3(branch7x7)

    branch7x7dbl = self.branch7x7dbl_1(x)
    branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
    branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
    branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
    branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)

    branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
                               count_include_pad=self.pool_include_padding)
    branch_pool = self.branch_pool(branch_pool)

    outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]
    return outputs

def forward(self, x):
    outputs = self._forward(x)
    return torch.cat(outputs, 1)

class InceptionD(nn.Module):

复制代码
def __init__(self, in_channels, conv_block=None):
    super(InceptionD, self).__init__()
    if conv_block is None:
        conv_block = BasicConv2d
    self.branch3x3_1 = conv_block(in_channels, 192, kernel_size=1)
    self.branch3x3_2 = conv_block(192, 320, kernel_size=3, stride=2)

    self.branch7x7x3_1 = conv_block(in_channels, 192, kernel_size=1)
    self.branch7x7x3_2 = conv_block(192, 192, kernel_size=(1, 7), padding=(0, 3))
    self.branch7x7x3_3 = conv_block(192, 192, kernel_size=(7, 1), padding=(3, 0))
    self.branch7x7x3_4 = conv_block(192, 192, kernel_size=3, stride=2)

def _forward(self, x):
    branch3x3 = self.branch3x3_1(x)
    branch3x3 = self.branch3x3_2(branch3x3)

    branch7x7x3 = self.branch7x7x3_1(x)
    branch7x7x3 = self.branch7x7x3_2(branch7x7x3)
    branch7x7x3 = self.branch7x7x3_3(branch7x7x3)
    branch7x7x3 = self.branch7x7x3_4(branch7x7x3)

    branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)
    outputs = [branch3x3, branch7x7x3, branch_pool]
    return outputs

def forward(self, x):
    outputs = self._forward(x)
    return torch.cat(outputs, 1)

class InceptionE(nn.Module):

复制代码
def __init__(self, in_channels, conv_block=None, align_tf=False, use_max_pool=False):
    super(InceptionE, self).__init__()
    if conv_block is None:
        conv_block = BasicConv2d
    self.branch1x1 = conv_block(in_channels, 320, kernel_size=1)

    self.branch3x3_1 = conv_block(in_channels, 384, kernel_size=1)
    self.branch3x3_2a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1))
    self.branch3x3_2b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0))

    self.branch3x3dbl_1 = conv_block(in_channels, 448, kernel_size=1)
    self.branch3x3dbl_2 = conv_block(448, 384, kernel_size=3, padding=1)
    self.branch3x3dbl_3a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1))
    self.branch3x3dbl_3b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0))

    self.branch_pool = conv_block(in_channels, 192, kernel_size=1)
    self.pool_include_padding = not align_tf
    self.use_max_pool = use_max_pool

def _forward(self, x):
    branch1x1 = self.branch1x1(x)

    branch3x3 = self.branch3x3_1(x)
    branch3x3 = [
        self.branch3x3_2a(branch3x3),
        self.branch3x3_2b(branch3x3),
    ]
    branch3x3 = torch.cat(branch3x3, 1)

    branch3x3dbl = self.branch3x3dbl_1(x)
    branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
    branch3x3dbl = [
        self.branch3x3dbl_3a(branch3x3dbl),
        self.branch3x3dbl_3b(branch3x3dbl),
    ]
    branch3x3dbl = torch.cat(branch3x3dbl, 1)

    if self.use_max_pool:
        branch_pool = F.max_pool2d(x, kernel_size=3, stride=1, padding=1)
    else:
        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
                                   count_include_pad=self.pool_include_padding)
    branch_pool = self.branch_pool(branch_pool)

    outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
    return outputs

def forward(self, x):
    outputs = self._forward(x)
    return torch.cat(outputs, 1)

class InceptionAux(nn.Module):

复制代码
def __init__(self, in_channels, num_classes, conv_block=None):
    super(InceptionAux, self).__init__()
    if conv_block is None:
        conv_block = BasicConv2d
    self.conv0 = conv_block(in_channels, 128, kernel_size=1)
    self.conv1 = conv_block(128, 768, kernel_size=5)
    self.conv1.stddev = 0.01
    self.fc = nn.Linear(768, num_classes)
    self.fc.stddev = 0.001

def forward(self, x):
    # N x 768 x 17 x 17
    x = F.avg_pool2d(x, kernel_size=5, stride=3)
    # N x 768 x 5 x 5
    x = self.conv0(x)
    # N x 128 x 5 x 5
    x = self.conv1(x)
    # N x 768 x 1 x 1
    # Adaptive average pooling
    x = F.adaptive_avg_pool2d(x, (1, 1))
    # N x 768 x 1 x 1
    x = torch.flatten(x, 1)
    # N x 768
    x = self.fc(x)
    # N x 1000
    return x

class BasicConv2d(nn.Module):

复制代码
def __init__(self, in_channels, out_channels, **kwargs):
    super(BasicConv2d, self).__init__()
    self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
    self.bn = nn.BatchNorm2d(out_channels, eps=0.001)

def forward(self, x):
    x = self.conv(x)
    x = self.bn(x)
    return F.relu(x, inplace=True
相关推荐
Honmaple15 小时前
OpenClaw 迁移指南:如何把 AI 助手搬到新电脑
人工智能
wenzhangli715 小时前
Ooder A2UI 第一性原理出发 深度解析核心逻辑
人工智能·开源
网络安全研究所15 小时前
AI安全提示词注入攻击如何操控你的智能助手?
人工智能·安全
数据猿15 小时前
硬盘价格涨疯了,AI存储何去何从?
人工智能
喵手15 小时前
Python爬虫实战:HTTP缓存系统深度实战 — ETag、Last-Modified与requests-cache完全指南(附SQLite持久化存储)!
爬虫·python·爬虫实战·http缓存·etag·零基础python爬虫教学·requests-cache
zhangfeng113315 小时前
氨基酸序列表示法,蛋白质序列表达 计算机中机器学习 大语言模型中的表达,为什么没有糖蛋白或者其他基团磷酸化甲基化乙酰化泛素化
人工智能·机器学习·语言模型
喵手15 小时前
Python爬虫实战:容器化与定时调度实战 - Docker + Cron + 日志轮转 + 失败重试完整方案(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·容器化·零基础python爬虫教学·csv导出·定时调度
陈天伟教授15 小时前
人工智能应用- 语言理解:06.大语言模型
人工智能·语言模型·自然语言处理
海心焱15 小时前
安全之盾:深度解析 MCP 如何缝合企业级 SSO 身份验证体系,构建可信 AI 数据通道
人工智能·安全
2501_9453184915 小时前
AI证书能否作为招聘/培训标准?2026最新
人工智能