Inception【代码详解Pytorch version】

"""Contains the Inception V3 model, which is used for inference ONLY.

This file is mostly borrowed from torchvision/models/inception.py.

Inception model is widely used to compute FID or IS metric for evaluating

generative models. However, the pre-trained models from torchvision is slightly

different from the TensorFlow version

http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz

which is used by the official FID implementation

https://github.com/bioinf-jku/TTUR

In particular:

(1) The number of classes in TensorFlow model is 1008 instead of 1000.

(2) The avg_pool() layers in TensorFlow model does not include the padded zero.

(3) The last Inception E Block in TensorFlow model use max_pool() instead of

avg_pool().

Hence, to align the evaluation results with those from TensorFlow

implementation, we modified the inception model to support both versions. Please

use align_tf argument to control the version.

"""

import warnings

import torch

import torch.nn as nn

import torch.nn.functional as F

import torch.distributed as dist

from utils.misc import download_url

all = ['InceptionModel']

_MODEL_URL_SHA256 = {

This model is provided by torchvision, which is ported from TensorFlow.

'torchvision_official': (

'https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth',

'1a9a5a14f40645a370184bd54f4e8e631351e71399112b43ad0294a79da290c8' # hash sha256

),

# This model is provided by https://github.com/mseitzer/pytorch-fid
'tf_inception_v3': (
    'https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth',
    '6726825d0af5f729cebd5821db510b11b1cfad8faad88a03f1befd49fb9129b2'  # hash sha256
)

}

class InceptionModel(object):

"""Defines the Inception (V3) model.

This is a static class, which is used to avoid this model to be built
repeatedly. Consequently, this model is particularly used for inference,
like computing FID. If training is required, please use the model from
`torchvision.models` or implement by yourself.

NOTE: The pre-trained model assumes the inputs to be with `RGB` channel
order and pixel range [-1, 1], and will also resize the images to shape
[299, 299] automatically. If your input is normalized by subtracting
(0.485, 0.456, 0.406) and dividing (0.229, 0.224, 0.225), please use
`transform_input` in the `forward()` function to un-normalize it.
"""
models = dict()

@staticmethod
def build_model(align_tf=True):
    """Builds the model and load pre-trained weights.

    If `align_tf` is set as True, the model will predict 1008 classes, and
    the pre-trained weight from `https://github.com/mseitzer/pytorch-fid`
    will be loaded. Otherwise, the model will predict 1000 classes, and will
    load the model from `torchvision`.

    The built model supports following arguments when forwarding:

    - transform_input: Whether to transform the input back to pixel range
        (-1, 1). Please disable this argument if your input is already with
        pixel range (-1, 1). (default: False)
    - output_logits: Whether to output the categorical logits instead of
        features. (default: False)
    - remove_logits_bias: Whether to remove the bias when computing the
        logits. The official implementation removes the bias by default.
        Please refer to
        `https://github.com/openai/improved-gan/blob/master/inception_score/model.py`.
        (default: False)
    - output_predictions: Whether to output the final predictions, i.e.,
        `softmax(logits)`. (default: False)
    """
    if align_tf:
        num_classes = 1008
        model_source = 'tf_inception_v3'
    else:
        num_classes = 1000
        model_source = 'torchvision_official'

    fingerprint = model_source

    if fingerprint not in InceptionModel.models:
        # Build model.
        model = Inception3(num_classes=num_classes,
                           aux_logits=False,
                           init_weights=False,
                           align_tf=align_tf)

        # Download pre-trained weights.
        if dist.is_initialized() and dist.get_rank() != 0:
            dist.barrier()  # Download by chief.

        url, sha256 = _MODEL_URL_SHA256[model_source]
        filename = f'inception_model_{model_source}_{sha256}.pth'
        model_path, hash_check = download_url(url,
                                              filename=filename,
                                              sha256=sha256)
        state_dict = torch.load(model_path, map_location='cpu')
        if hash_check is False:
            warnings.warn(f'Hash check failed! The remote file from URL '
                          f'`{url}` may be changed, or the downloading is '
                          f'interrupted. The loaded inception model may '
                          f'have unexpected behavior.')

        if dist.is_initialized() and dist.get_rank() == 0:
            dist.barrier()  # Wait for other replicas.

        # Load weights.
        model.load_state_dict(state_dict, strict=False)
        del state_dict

        # For inference only.
        model.eval().requires_grad_(False).cuda()
        InceptionModel.models[fingerprint] = model

    return InceptionModel.models[fingerprint]

class Inception3(nn.Module):

def __init__(self, num_classes=1000, aux_logits=True, inception_blocks=None,
             init_weights=True, align_tf=True):
    super(Inception3, self).__init__()
    if inception_blocks is None:
        inception_blocks = [
            BasicConv2d, InceptionA, InceptionB, InceptionC,
            InceptionD, InceptionE, InceptionAux
        ]
    assert len(inception_blocks) == 7
    conv_block = inception_blocks[0]
    inception_a = inception_blocks[1]
    inception_b = inception_blocks[2]
    inception_c = inception_blocks[3]
    inception_d = inception_blocks[4]
    inception_e = inception_blocks[5]
    inception_aux = inception_blocks[6]

    self.aux_logits = aux_logits
    self.align_tf = align_tf
    self.Conv2d_1a_3x3 = conv_block(3, 32, kernel_size=3, stride=2)
    self.Conv2d_2a_3x3 = conv_block(32, 32, kernel_size=3)
    self.Conv2d_2b_3x3 = conv_block(32, 64, kernel_size=3, padding=1)
    self.Conv2d_3b_1x1 = conv_block(64, 80, kernel_size=1)
    self.Conv2d_4a_3x3 = conv_block(80, 192, kernel_size=3)
    self.Mixed_5b = inception_a(192, pool_features=32, align_tf=self.align_tf)
    self.Mixed_5c = inception_a(256, pool_features=64, align_tf=self.align_tf)
    self.Mixed_5d = inception_a(288, pool_features=64, align_tf=self.align_tf)
    self.Mixed_6a = inception_b(288)
    self.Mixed_6b = inception_c(768, channels_7x7=128, align_tf=self.align_tf)
    self.Mixed_6c = inception_c(768, channels_7x7=160, align_tf=self.align_tf)
    self.Mixed_6d = inception_c(768, channels_7x7=160, align_tf=self.align_tf)
    self.Mixed_6e = inception_c(768, channels_7x7=192, align_tf=self.align_tf)
    if aux_logits:
        self.AuxLogits = inception_aux(768, num_classes)
    self.Mixed_7a = inception_d(768)
    self.Mixed_7b = inception_e(1280, align_tf=self.align_tf)
    self.Mixed_7c = inception_e(2048, use_max_pool=self.align_tf)
    self.fc = nn.Linear(2048, num_classes)
    if init_weights:
        for m in self.modules():
            if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
                import scipy.stats as stats
                stddev = m.stddev if hasattr(m, 'stddev') else 0.1
                X = stats.truncnorm(-2, 2, scale=stddev)
                values = torch.as_tensor(X.rvs(m.weight.numel()), dtype=m.weight.dtype)
                values = values.view(m.weight.size())
                with torch.no_grad():
                    m.weight.copy_(values)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

@staticmethod
def _transform_input(x, transform_input=False):
    if transform_input:
        x_ch0 = torch.unsqueeze(x[:, 0], 1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5
        x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5
        x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5
        x = torch.cat((x_ch0, x_ch1, x_ch2), 1)
    return x

def _forward(self,
             x,
             output_logits=False,
             remove_logits_bias=False,
             output_predictions=False):
    # Upsample if necessary.
    if x.shape[2] != 299 or x.shape[3] != 299:
        if self.align_tf:
            theta = torch.eye(2, 3).to(x)
            theta[0, 2] += theta[0, 0] / x.shape[3] - theta[0, 0] / 299
            theta[1, 2] += theta[1, 1] / x.shape[2] - theta[1, 1] / 299
            theta = theta.unsqueeze(0).repeat(x.shape[0], 1, 1)
            grid = F.affine_grid(theta,
                                 size=(x.shape[0], x.shape[1], 299, 299),
                                 align_corners=False)
            x = F.grid_sample(x, grid,
                              mode='bilinear',
                              padding_mode='border',
                              align_corners=False)
        else:
            x = F.interpolate(
                x, size=(299, 299), mode='bilinear', align_corners=False)
    if x.shape[1] == 1:
        x = x.repeat((1, 3, 1, 1))

    if self.align_tf:
        x = (x * 127.5 + 127.5 - 128) / 128

    # N x 3 x 299 x 299
    x = self.Conv2d_1a_3x3(x)
    # N x 32 x 149 x 149
    x = self.Conv2d_2a_3x3(x)
    # N x 32 x 147 x 147
    x = self.Conv2d_2b_3x3(x)
    # N x 64 x 147 x 147
    x = F.max_pool2d(x, kernel_size=3, stride=2)
    # N x 64 x 73 x 73
    x = self.Conv2d_3b_1x1(x)
    # N x 80 x 73 x 73
    x = self.Conv2d_4a_3x3(x)
    # N x 192 x 71 x 71
    x = F.max_pool2d(x, kernel_size=3, stride=2)
    # N x 192 x 35 x 35
    x = self.Mixed_5b(x)
    # N x 256 x 35 x 35
    x = self.Mixed_5c(x)
    # N x 288 x 35 x 35
    x = self.Mixed_5d(x)
    # N x 288 x 35 x 35
    x = self.Mixed_6a(x)
    # N x 768 x 17 x 17
    x = self.Mixed_6b(x)
    # N x 768 x 17 x 17
    x = self.Mixed_6c(x)
    # N x 768 x 17 x 17
    x = self.Mixed_6d(x)
    # N x 768 x 17 x 17
    x = self.Mixed_6e(x)
    # N x 768 x 17 x 17
    if self.training and self.aux_logits:
        aux = self.AuxLogits(x)
    else:
        aux = None
    # N x 768 x 17 x 17
    x = self.Mixed_7a(x)
    # N x 1280 x 8 x 8
    x = self.Mixed_7b(x)
    # N x 2048 x 8 x 8
    x = self.Mixed_7c(x)
    # N x 2048 x 8 x 8
    # Adaptive average pooling
    x = F.adaptive_avg_pool2d(x, (1, 1))
    # N x 2048 x 1 x 1
    x = F.dropout(x, training=self.training)
    # N x 2048 x 1 x 1
    x = torch.flatten(x, 1)
    # N x 2048
    if output_logits or output_predictions:
        x = self.fc(x)
        # N x 1000 (num_classes)
        if remove_logits_bias:
            x = x - self.fc.bias.view(1, -1)
        if output_predictions:
            x = F.softmax(x, dim=1)
    return x, aux

def forward(self,
            x,
            transform_input=False,
            output_logits=False,
            remove_logits_bias=False,
            output_predictions=False):
    x = self._transform_input(x, transform_input)
    x, aux = self._forward(
        x, output_logits, remove_logits_bias, output_predictions)
    if self.training and self.aux_logits:
        return x, aux
    else:
        return x

class InceptionA(nn.Module):

def __init__(self, in_channels, pool_features, conv_block=None, align_tf=False):
    super(InceptionA, self).__init__()
    if conv_block is None:
        conv_block = BasicConv2d
    self.branch1x1 = conv_block(in_channels, 64, kernel_size=1)

    self.branch5x5_1 = conv_block(in_channels, 48, kernel_size=1)
    self.branch5x5_2 = conv_block(48, 64, kernel_size=5, padding=2)

    self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1)
    self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1)
    self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, padding=1)

    self.branch_pool = conv_block(in_channels, pool_features, kernel_size=1)
    self.pool_include_padding = not align_tf

def _forward(self, x):
    branch1x1 = self.branch1x1(x)

    branch5x5 = self.branch5x5_1(x)
    branch5x5 = self.branch5x5_2(branch5x5)

    branch3x3dbl = self.branch3x3dbl_1(x)
    branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
    branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)

    branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
                               count_include_pad=self.pool_include_padding)
    branch_pool = self.branch_pool(branch_pool)

    outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]
    return outputs

def forward(self, x):
    outputs = self._forward(x)
    return torch.cat(outputs, 1)

class InceptionB(nn.Module):

def __init__(self, in_channels, conv_block=None):
    super(InceptionB, self).__init__()
    if conv_block is None:
        conv_block = BasicConv2d
    self.branch3x3 = conv_block(in_channels, 384, kernel_size=3, stride=2)

    self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1)
    self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1)
    self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, stride=2)

def _forward(self, x):
    branch3x3 = self.branch3x3(x)

    branch3x3dbl = self.branch3x3dbl_1(x)
    branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
    branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)

    branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)

    outputs = [branch3x3, branch3x3dbl, branch_pool]
    return outputs

def forward(self, x):
    outputs = self._forward(x)
    return torch.cat(outputs, 1)

class InceptionC(nn.Module):

def __init__(self, in_channels, channels_7x7, conv_block=None, align_tf=False):
    super(InceptionC, self).__init__()
    if conv_block is None:
        conv_block = BasicConv2d
    self.branch1x1 = conv_block(in_channels, 192, kernel_size=1)

    c7 = channels_7x7
    self.branch7x7_1 = conv_block(in_channels, c7, kernel_size=1)
    self.branch7x7_2 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0, 3))
    self.branch7x7_3 = conv_block(c7, 192, kernel_size=(7, 1), padding=(3, 0))

    self.branch7x7dbl_1 = conv_block(in_channels, c7, kernel_size=1)
    self.branch7x7dbl_2 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0))
    self.branch7x7dbl_3 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0, 3))
    self.branch7x7dbl_4 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0))
    self.branch7x7dbl_5 = conv_block(c7, 192, kernel_size=(1, 7), padding=(0, 3))

    self.branch_pool = conv_block(in_channels, 192, kernel_size=1)
    self.pool_include_padding = not align_tf

def _forward(self, x):
    branch1x1 = self.branch1x1(x)

    branch7x7 = self.branch7x7_1(x)
    branch7x7 = self.branch7x7_2(branch7x7)
    branch7x7 = self.branch7x7_3(branch7x7)

    branch7x7dbl = self.branch7x7dbl_1(x)
    branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
    branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
    branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
    branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)

    branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
                               count_include_pad=self.pool_include_padding)
    branch_pool = self.branch_pool(branch_pool)

    outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]
    return outputs

def forward(self, x):
    outputs = self._forward(x)
    return torch.cat(outputs, 1)

class InceptionD(nn.Module):

def __init__(self, in_channels, conv_block=None):
    super(InceptionD, self).__init__()
    if conv_block is None:
        conv_block = BasicConv2d
    self.branch3x3_1 = conv_block(in_channels, 192, kernel_size=1)
    self.branch3x3_2 = conv_block(192, 320, kernel_size=3, stride=2)

    self.branch7x7x3_1 = conv_block(in_channels, 192, kernel_size=1)
    self.branch7x7x3_2 = conv_block(192, 192, kernel_size=(1, 7), padding=(0, 3))
    self.branch7x7x3_3 = conv_block(192, 192, kernel_size=(7, 1), padding=(3, 0))
    self.branch7x7x3_4 = conv_block(192, 192, kernel_size=3, stride=2)

def _forward(self, x):
    branch3x3 = self.branch3x3_1(x)
    branch3x3 = self.branch3x3_2(branch3x3)

    branch7x7x3 = self.branch7x7x3_1(x)
    branch7x7x3 = self.branch7x7x3_2(branch7x7x3)
    branch7x7x3 = self.branch7x7x3_3(branch7x7x3)
    branch7x7x3 = self.branch7x7x3_4(branch7x7x3)

    branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)
    outputs = [branch3x3, branch7x7x3, branch_pool]
    return outputs

def forward(self, x):
    outputs = self._forward(x)
    return torch.cat(outputs, 1)

class InceptionE(nn.Module):

def __init__(self, in_channels, conv_block=None, align_tf=False, use_max_pool=False):
    super(InceptionE, self).__init__()
    if conv_block is None:
        conv_block = BasicConv2d
    self.branch1x1 = conv_block(in_channels, 320, kernel_size=1)

    self.branch3x3_1 = conv_block(in_channels, 384, kernel_size=1)
    self.branch3x3_2a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1))
    self.branch3x3_2b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0))

    self.branch3x3dbl_1 = conv_block(in_channels, 448, kernel_size=1)
    self.branch3x3dbl_2 = conv_block(448, 384, kernel_size=3, padding=1)
    self.branch3x3dbl_3a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1))
    self.branch3x3dbl_3b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0))

    self.branch_pool = conv_block(in_channels, 192, kernel_size=1)
    self.pool_include_padding = not align_tf
    self.use_max_pool = use_max_pool

def _forward(self, x):
    branch1x1 = self.branch1x1(x)

    branch3x3 = self.branch3x3_1(x)
    branch3x3 = [
        self.branch3x3_2a(branch3x3),
        self.branch3x3_2b(branch3x3),
    ]
    branch3x3 = torch.cat(branch3x3, 1)

    branch3x3dbl = self.branch3x3dbl_1(x)
    branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
    branch3x3dbl = [
        self.branch3x3dbl_3a(branch3x3dbl),
        self.branch3x3dbl_3b(branch3x3dbl),
    ]
    branch3x3dbl = torch.cat(branch3x3dbl, 1)

    if self.use_max_pool:
        branch_pool = F.max_pool2d(x, kernel_size=3, stride=1, padding=1)
    else:
        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
                                   count_include_pad=self.pool_include_padding)
    branch_pool = self.branch_pool(branch_pool)

    outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
    return outputs

def forward(self, x):
    outputs = self._forward(x)
    return torch.cat(outputs, 1)

class InceptionAux(nn.Module):

def __init__(self, in_channels, num_classes, conv_block=None):
    super(InceptionAux, self).__init__()
    if conv_block is None:
        conv_block = BasicConv2d
    self.conv0 = conv_block(in_channels, 128, kernel_size=1)
    self.conv1 = conv_block(128, 768, kernel_size=5)
    self.conv1.stddev = 0.01
    self.fc = nn.Linear(768, num_classes)
    self.fc.stddev = 0.001

def forward(self, x):
    # N x 768 x 17 x 17
    x = F.avg_pool2d(x, kernel_size=5, stride=3)
    # N x 768 x 5 x 5
    x = self.conv0(x)
    # N x 128 x 5 x 5
    x = self.conv1(x)
    # N x 768 x 1 x 1
    # Adaptive average pooling
    x = F.adaptive_avg_pool2d(x, (1, 1))
    # N x 768 x 1 x 1
    x = torch.flatten(x, 1)
    # N x 768
    x = self.fc(x)
    # N x 1000
    return x

class BasicConv2d(nn.Module):

def __init__(self, in_channels, out_channels, **kwargs):
    super(BasicConv2d, self).__init__()
    self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
    self.bn = nn.BatchNorm2d(out_channels, eps=0.001)

def forward(self, x):
    x = self.conv(x)
    x = self.bn(x)
    return F.relu(x, inplace=True
相关推荐
热爱跑步的恒川41 分钟前
【论文复现】基于图卷积网络的轻量化推荐模型
网络·人工智能·开源·aigc·ai编程
API快乐传递者43 分钟前
淘宝反爬虫机制的主要手段有哪些?
爬虫·python
阡之尘埃3 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
孙同学要努力5 小时前
全连接神经网络案例——手写数字识别
人工智能·深度学习·神经网络
Eric.Lee20215 小时前
yolo v5 开源项目
人工智能·yolo·目标检测·计算机视觉
其实吧36 小时前
基于Matlab的图像融合研究设计
人工智能·计算机视觉·matlab
丕羽6 小时前
【Pytorch】基本语法
人工智能·pytorch·python
ctrey_6 小时前
2024-11-1 学习人工智能的Day20 openCV(2)
人工智能·opencv·学习
bryant_meng6 小时前
【python】Distribution
开发语言·python·分布函数·常用分布
SongYuLong的博客6 小时前
Air780E基于LuatOS编程开发
人工智能