Inception【代码详解Pytorch version】

"""Contains the Inception V3 model, which is used for inference ONLY.

This file is mostly borrowed from torchvision/models/inception.py.

Inception model is widely used to compute FID or IS metric for evaluating

generative models. However, the pre-trained models from torchvision is slightly

different from the TensorFlow version

http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz

which is used by the official FID implementation

https://github.com/bioinf-jku/TTUR

In particular:

(1) The number of classes in TensorFlow model is 1008 instead of 1000.

(2) The avg_pool() layers in TensorFlow model does not include the padded zero.

(3) The last Inception E Block in TensorFlow model use max_pool() instead of

avg_pool().

Hence, to align the evaluation results with those from TensorFlow

implementation, we modified the inception model to support both versions. Please

use align_tf argument to control the version.

"""

import warnings

import torch

import torch.nn as nn

import torch.nn.functional as F

import torch.distributed as dist

from utils.misc import download_url

all = ['InceptionModel']

_MODEL_URL_SHA256 = {

This model is provided by torchvision, which is ported from TensorFlow.

'torchvision_official': (

'https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth',

'1a9a5a14f40645a370184bd54f4e8e631351e71399112b43ad0294a79da290c8' # hash sha256

),

复制代码
# This model is provided by https://github.com/mseitzer/pytorch-fid
'tf_inception_v3': (
    'https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth',
    '6726825d0af5f729cebd5821db510b11b1cfad8faad88a03f1befd49fb9129b2'  # hash sha256
)

}

class InceptionModel(object):

"""Defines the Inception (V3) model.

复制代码
This is a static class, which is used to avoid this model to be built
repeatedly. Consequently, this model is particularly used for inference,
like computing FID. If training is required, please use the model from
`torchvision.models` or implement by yourself.

NOTE: The pre-trained model assumes the inputs to be with `RGB` channel
order and pixel range [-1, 1], and will also resize the images to shape
[299, 299] automatically. If your input is normalized by subtracting
(0.485, 0.456, 0.406) and dividing (0.229, 0.224, 0.225), please use
`transform_input` in the `forward()` function to un-normalize it.
"""
models = dict()

@staticmethod
def build_model(align_tf=True):
    """Builds the model and load pre-trained weights.

    If `align_tf` is set as True, the model will predict 1008 classes, and
    the pre-trained weight from `https://github.com/mseitzer/pytorch-fid`
    will be loaded. Otherwise, the model will predict 1000 classes, and will
    load the model from `torchvision`.

    The built model supports following arguments when forwarding:

    - transform_input: Whether to transform the input back to pixel range
        (-1, 1). Please disable this argument if your input is already with
        pixel range (-1, 1). (default: False)
    - output_logits: Whether to output the categorical logits instead of
        features. (default: False)
    - remove_logits_bias: Whether to remove the bias when computing the
        logits. The official implementation removes the bias by default.
        Please refer to
        `https://github.com/openai/improved-gan/blob/master/inception_score/model.py`.
        (default: False)
    - output_predictions: Whether to output the final predictions, i.e.,
        `softmax(logits)`. (default: False)
    """
    if align_tf:
        num_classes = 1008
        model_source = 'tf_inception_v3'
    else:
        num_classes = 1000
        model_source = 'torchvision_official'

    fingerprint = model_source

    if fingerprint not in InceptionModel.models:
        # Build model.
        model = Inception3(num_classes=num_classes,
                           aux_logits=False,
                           init_weights=False,
                           align_tf=align_tf)

        # Download pre-trained weights.
        if dist.is_initialized() and dist.get_rank() != 0:
            dist.barrier()  # Download by chief.

        url, sha256 = _MODEL_URL_SHA256[model_source]
        filename = f'inception_model_{model_source}_{sha256}.pth'
        model_path, hash_check = download_url(url,
                                              filename=filename,
                                              sha256=sha256)
        state_dict = torch.load(model_path, map_location='cpu')
        if hash_check is False:
            warnings.warn(f'Hash check failed! The remote file from URL '
                          f'`{url}` may be changed, or the downloading is '
                          f'interrupted. The loaded inception model may '
                          f'have unexpected behavior.')

        if dist.is_initialized() and dist.get_rank() == 0:
            dist.barrier()  # Wait for other replicas.

        # Load weights.
        model.load_state_dict(state_dict, strict=False)
        del state_dict

        # For inference only.
        model.eval().requires_grad_(False).cuda()
        InceptionModel.models[fingerprint] = model

    return InceptionModel.models[fingerprint]

class Inception3(nn.Module):

复制代码
def __init__(self, num_classes=1000, aux_logits=True, inception_blocks=None,
             init_weights=True, align_tf=True):
    super(Inception3, self).__init__()
    if inception_blocks is None:
        inception_blocks = [
            BasicConv2d, InceptionA, InceptionB, InceptionC,
            InceptionD, InceptionE, InceptionAux
        ]
    assert len(inception_blocks) == 7
    conv_block = inception_blocks[0]
    inception_a = inception_blocks[1]
    inception_b = inception_blocks[2]
    inception_c = inception_blocks[3]
    inception_d = inception_blocks[4]
    inception_e = inception_blocks[5]
    inception_aux = inception_blocks[6]

    self.aux_logits = aux_logits
    self.align_tf = align_tf
    self.Conv2d_1a_3x3 = conv_block(3, 32, kernel_size=3, stride=2)
    self.Conv2d_2a_3x3 = conv_block(32, 32, kernel_size=3)
    self.Conv2d_2b_3x3 = conv_block(32, 64, kernel_size=3, padding=1)
    self.Conv2d_3b_1x1 = conv_block(64, 80, kernel_size=1)
    self.Conv2d_4a_3x3 = conv_block(80, 192, kernel_size=3)
    self.Mixed_5b = inception_a(192, pool_features=32, align_tf=self.align_tf)
    self.Mixed_5c = inception_a(256, pool_features=64, align_tf=self.align_tf)
    self.Mixed_5d = inception_a(288, pool_features=64, align_tf=self.align_tf)
    self.Mixed_6a = inception_b(288)
    self.Mixed_6b = inception_c(768, channels_7x7=128, align_tf=self.align_tf)
    self.Mixed_6c = inception_c(768, channels_7x7=160, align_tf=self.align_tf)
    self.Mixed_6d = inception_c(768, channels_7x7=160, align_tf=self.align_tf)
    self.Mixed_6e = inception_c(768, channels_7x7=192, align_tf=self.align_tf)
    if aux_logits:
        self.AuxLogits = inception_aux(768, num_classes)
    self.Mixed_7a = inception_d(768)
    self.Mixed_7b = inception_e(1280, align_tf=self.align_tf)
    self.Mixed_7c = inception_e(2048, use_max_pool=self.align_tf)
    self.fc = nn.Linear(2048, num_classes)
    if init_weights:
        for m in self.modules():
            if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
                import scipy.stats as stats
                stddev = m.stddev if hasattr(m, 'stddev') else 0.1
                X = stats.truncnorm(-2, 2, scale=stddev)
                values = torch.as_tensor(X.rvs(m.weight.numel()), dtype=m.weight.dtype)
                values = values.view(m.weight.size())
                with torch.no_grad():
                    m.weight.copy_(values)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

@staticmethod
def _transform_input(x, transform_input=False):
    if transform_input:
        x_ch0 = torch.unsqueeze(x[:, 0], 1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5
        x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5
        x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5
        x = torch.cat((x_ch0, x_ch1, x_ch2), 1)
    return x

def _forward(self,
             x,
             output_logits=False,
             remove_logits_bias=False,
             output_predictions=False):
    # Upsample if necessary.
    if x.shape[2] != 299 or x.shape[3] != 299:
        if self.align_tf:
            theta = torch.eye(2, 3).to(x)
            theta[0, 2] += theta[0, 0] / x.shape[3] - theta[0, 0] / 299
            theta[1, 2] += theta[1, 1] / x.shape[2] - theta[1, 1] / 299
            theta = theta.unsqueeze(0).repeat(x.shape[0], 1, 1)
            grid = F.affine_grid(theta,
                                 size=(x.shape[0], x.shape[1], 299, 299),
                                 align_corners=False)
            x = F.grid_sample(x, grid,
                              mode='bilinear',
                              padding_mode='border',
                              align_corners=False)
        else:
            x = F.interpolate(
                x, size=(299, 299), mode='bilinear', align_corners=False)
    if x.shape[1] == 1:
        x = x.repeat((1, 3, 1, 1))

    if self.align_tf:
        x = (x * 127.5 + 127.5 - 128) / 128

    # N x 3 x 299 x 299
    x = self.Conv2d_1a_3x3(x)
    # N x 32 x 149 x 149
    x = self.Conv2d_2a_3x3(x)
    # N x 32 x 147 x 147
    x = self.Conv2d_2b_3x3(x)
    # N x 64 x 147 x 147
    x = F.max_pool2d(x, kernel_size=3, stride=2)
    # N x 64 x 73 x 73
    x = self.Conv2d_3b_1x1(x)
    # N x 80 x 73 x 73
    x = self.Conv2d_4a_3x3(x)
    # N x 192 x 71 x 71
    x = F.max_pool2d(x, kernel_size=3, stride=2)
    # N x 192 x 35 x 35
    x = self.Mixed_5b(x)
    # N x 256 x 35 x 35
    x = self.Mixed_5c(x)
    # N x 288 x 35 x 35
    x = self.Mixed_5d(x)
    # N x 288 x 35 x 35
    x = self.Mixed_6a(x)
    # N x 768 x 17 x 17
    x = self.Mixed_6b(x)
    # N x 768 x 17 x 17
    x = self.Mixed_6c(x)
    # N x 768 x 17 x 17
    x = self.Mixed_6d(x)
    # N x 768 x 17 x 17
    x = self.Mixed_6e(x)
    # N x 768 x 17 x 17
    if self.training and self.aux_logits:
        aux = self.AuxLogits(x)
    else:
        aux = None
    # N x 768 x 17 x 17
    x = self.Mixed_7a(x)
    # N x 1280 x 8 x 8
    x = self.Mixed_7b(x)
    # N x 2048 x 8 x 8
    x = self.Mixed_7c(x)
    # N x 2048 x 8 x 8
    # Adaptive average pooling
    x = F.adaptive_avg_pool2d(x, (1, 1))
    # N x 2048 x 1 x 1
    x = F.dropout(x, training=self.training)
    # N x 2048 x 1 x 1
    x = torch.flatten(x, 1)
    # N x 2048
    if output_logits or output_predictions:
        x = self.fc(x)
        # N x 1000 (num_classes)
        if remove_logits_bias:
            x = x - self.fc.bias.view(1, -1)
        if output_predictions:
            x = F.softmax(x, dim=1)
    return x, aux

def forward(self,
            x,
            transform_input=False,
            output_logits=False,
            remove_logits_bias=False,
            output_predictions=False):
    x = self._transform_input(x, transform_input)
    x, aux = self._forward(
        x, output_logits, remove_logits_bias, output_predictions)
    if self.training and self.aux_logits:
        return x, aux
    else:
        return x

class InceptionA(nn.Module):

复制代码
def __init__(self, in_channels, pool_features, conv_block=None, align_tf=False):
    super(InceptionA, self).__init__()
    if conv_block is None:
        conv_block = BasicConv2d
    self.branch1x1 = conv_block(in_channels, 64, kernel_size=1)

    self.branch5x5_1 = conv_block(in_channels, 48, kernel_size=1)
    self.branch5x5_2 = conv_block(48, 64, kernel_size=5, padding=2)

    self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1)
    self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1)
    self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, padding=1)

    self.branch_pool = conv_block(in_channels, pool_features, kernel_size=1)
    self.pool_include_padding = not align_tf

def _forward(self, x):
    branch1x1 = self.branch1x1(x)

    branch5x5 = self.branch5x5_1(x)
    branch5x5 = self.branch5x5_2(branch5x5)

    branch3x3dbl = self.branch3x3dbl_1(x)
    branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
    branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)

    branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
                               count_include_pad=self.pool_include_padding)
    branch_pool = self.branch_pool(branch_pool)

    outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]
    return outputs

def forward(self, x):
    outputs = self._forward(x)
    return torch.cat(outputs, 1)

class InceptionB(nn.Module):

复制代码
def __init__(self, in_channels, conv_block=None):
    super(InceptionB, self).__init__()
    if conv_block is None:
        conv_block = BasicConv2d
    self.branch3x3 = conv_block(in_channels, 384, kernel_size=3, stride=2)

    self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1)
    self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1)
    self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, stride=2)

def _forward(self, x):
    branch3x3 = self.branch3x3(x)

    branch3x3dbl = self.branch3x3dbl_1(x)
    branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
    branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)

    branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)

    outputs = [branch3x3, branch3x3dbl, branch_pool]
    return outputs

def forward(self, x):
    outputs = self._forward(x)
    return torch.cat(outputs, 1)

class InceptionC(nn.Module):

复制代码
def __init__(self, in_channels, channels_7x7, conv_block=None, align_tf=False):
    super(InceptionC, self).__init__()
    if conv_block is None:
        conv_block = BasicConv2d
    self.branch1x1 = conv_block(in_channels, 192, kernel_size=1)

    c7 = channels_7x7
    self.branch7x7_1 = conv_block(in_channels, c7, kernel_size=1)
    self.branch7x7_2 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0, 3))
    self.branch7x7_3 = conv_block(c7, 192, kernel_size=(7, 1), padding=(3, 0))

    self.branch7x7dbl_1 = conv_block(in_channels, c7, kernel_size=1)
    self.branch7x7dbl_2 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0))
    self.branch7x7dbl_3 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0, 3))
    self.branch7x7dbl_4 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0))
    self.branch7x7dbl_5 = conv_block(c7, 192, kernel_size=(1, 7), padding=(0, 3))

    self.branch_pool = conv_block(in_channels, 192, kernel_size=1)
    self.pool_include_padding = not align_tf

def _forward(self, x):
    branch1x1 = self.branch1x1(x)

    branch7x7 = self.branch7x7_1(x)
    branch7x7 = self.branch7x7_2(branch7x7)
    branch7x7 = self.branch7x7_3(branch7x7)

    branch7x7dbl = self.branch7x7dbl_1(x)
    branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
    branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
    branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
    branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)

    branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
                               count_include_pad=self.pool_include_padding)
    branch_pool = self.branch_pool(branch_pool)

    outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]
    return outputs

def forward(self, x):
    outputs = self._forward(x)
    return torch.cat(outputs, 1)

class InceptionD(nn.Module):

复制代码
def __init__(self, in_channels, conv_block=None):
    super(InceptionD, self).__init__()
    if conv_block is None:
        conv_block = BasicConv2d
    self.branch3x3_1 = conv_block(in_channels, 192, kernel_size=1)
    self.branch3x3_2 = conv_block(192, 320, kernel_size=3, stride=2)

    self.branch7x7x3_1 = conv_block(in_channels, 192, kernel_size=1)
    self.branch7x7x3_2 = conv_block(192, 192, kernel_size=(1, 7), padding=(0, 3))
    self.branch7x7x3_3 = conv_block(192, 192, kernel_size=(7, 1), padding=(3, 0))
    self.branch7x7x3_4 = conv_block(192, 192, kernel_size=3, stride=2)

def _forward(self, x):
    branch3x3 = self.branch3x3_1(x)
    branch3x3 = self.branch3x3_2(branch3x3)

    branch7x7x3 = self.branch7x7x3_1(x)
    branch7x7x3 = self.branch7x7x3_2(branch7x7x3)
    branch7x7x3 = self.branch7x7x3_3(branch7x7x3)
    branch7x7x3 = self.branch7x7x3_4(branch7x7x3)

    branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)
    outputs = [branch3x3, branch7x7x3, branch_pool]
    return outputs

def forward(self, x):
    outputs = self._forward(x)
    return torch.cat(outputs, 1)

class InceptionE(nn.Module):

复制代码
def __init__(self, in_channels, conv_block=None, align_tf=False, use_max_pool=False):
    super(InceptionE, self).__init__()
    if conv_block is None:
        conv_block = BasicConv2d
    self.branch1x1 = conv_block(in_channels, 320, kernel_size=1)

    self.branch3x3_1 = conv_block(in_channels, 384, kernel_size=1)
    self.branch3x3_2a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1))
    self.branch3x3_2b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0))

    self.branch3x3dbl_1 = conv_block(in_channels, 448, kernel_size=1)
    self.branch3x3dbl_2 = conv_block(448, 384, kernel_size=3, padding=1)
    self.branch3x3dbl_3a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1))
    self.branch3x3dbl_3b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0))

    self.branch_pool = conv_block(in_channels, 192, kernel_size=1)
    self.pool_include_padding = not align_tf
    self.use_max_pool = use_max_pool

def _forward(self, x):
    branch1x1 = self.branch1x1(x)

    branch3x3 = self.branch3x3_1(x)
    branch3x3 = [
        self.branch3x3_2a(branch3x3),
        self.branch3x3_2b(branch3x3),
    ]
    branch3x3 = torch.cat(branch3x3, 1)

    branch3x3dbl = self.branch3x3dbl_1(x)
    branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
    branch3x3dbl = [
        self.branch3x3dbl_3a(branch3x3dbl),
        self.branch3x3dbl_3b(branch3x3dbl),
    ]
    branch3x3dbl = torch.cat(branch3x3dbl, 1)

    if self.use_max_pool:
        branch_pool = F.max_pool2d(x, kernel_size=3, stride=1, padding=1)
    else:
        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
                                   count_include_pad=self.pool_include_padding)
    branch_pool = self.branch_pool(branch_pool)

    outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
    return outputs

def forward(self, x):
    outputs = self._forward(x)
    return torch.cat(outputs, 1)

class InceptionAux(nn.Module):

复制代码
def __init__(self, in_channels, num_classes, conv_block=None):
    super(InceptionAux, self).__init__()
    if conv_block is None:
        conv_block = BasicConv2d
    self.conv0 = conv_block(in_channels, 128, kernel_size=1)
    self.conv1 = conv_block(128, 768, kernel_size=5)
    self.conv1.stddev = 0.01
    self.fc = nn.Linear(768, num_classes)
    self.fc.stddev = 0.001

def forward(self, x):
    # N x 768 x 17 x 17
    x = F.avg_pool2d(x, kernel_size=5, stride=3)
    # N x 768 x 5 x 5
    x = self.conv0(x)
    # N x 128 x 5 x 5
    x = self.conv1(x)
    # N x 768 x 1 x 1
    # Adaptive average pooling
    x = F.adaptive_avg_pool2d(x, (1, 1))
    # N x 768 x 1 x 1
    x = torch.flatten(x, 1)
    # N x 768
    x = self.fc(x)
    # N x 1000
    return x

class BasicConv2d(nn.Module):

复制代码
def __init__(self, in_channels, out_channels, **kwargs):
    super(BasicConv2d, self).__init__()
    self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
    self.bn = nn.BatchNorm2d(out_channels, eps=0.001)

def forward(self, x):
    x = self.conv(x)
    x = self.bn(x)
    return F.relu(x, inplace=True
相关推荐
Coding茶水间17 小时前
基于深度学习的安全帽检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
头发还在的女程序员17 小时前
三天搞定招聘系统!附完整源码
开发语言·python
温轻舟17 小时前
Python自动办公工具06-设置Word文档中表格的格式
开发语言·python·word·自动化工具·温轻舟
weixin79893765432...17 小时前
Vue + Express + DeepSeek 实现一个简单的对话式 AI 应用
vue.js·人工智能·express
花酒锄作田17 小时前
[python]FastAPI-Tracking ID 的设计
python·fastapi
nju_spy17 小时前
ToT与ReAct:突破大模型推理能力瓶颈
人工智能·大模型·大模型推理·tot思维树·react推理行动·人工智能决策·ai推理引擎
AI-智能17 小时前
别啃文档了!3 分钟带小白跑完 Dify 全链路:从 0 到第一个 AI 工作流
人工智能·python·自然语言处理·llm·embedding·agent·rag
y***866918 小时前
C机器学习.NET生态库应用
人工智能·机器学习
deng120418 小时前
基于LeNet-5的图像分类小结
人工智能·分类·数据挖掘
d***956219 小时前
爬虫自动化(DrissionPage)
爬虫·python·自动化