Transformer-Adaboost多输入单输出回归预测神经网络【MATLAB】

Transformer-Adaboost多输入单输出回归预测模型结合了Transformer架构和AdaBoost算法,用于处理时间序列数据或具有多个输入特征的回归任务。下面是这个模型的详细介绍:

1. Transformer

Transformer是一种深度学习架构,最初用于自然语言处理任务,但也适用于其他类型的数据。其关键特性包括:

自注意力机制(Self-Attention): 允许模型关注输入序列的不同部分,从而捕捉长程依赖关系。

编码器-解码器结构: Transformer包含多个编码器和解码器层。对于回归任务,通常只使用编码器部分。

位置编码(Positional Encoding): 用于提供序列中元素的位置信息,因为Transformer不具备处理序列顺序的能力。

在回归任务中,Transformer可以处理多输入特征,捕捉这些特征间的复杂关系。

2. AdaBoost

AdaBoost(自适应提升算法)是一种提升方法,通过将多个弱回归模型结合起来形成一个强回归模型。主要步骤包括:

训练弱模型: 初始训练一个简单的回归模型(如线性回归)。

权重调整: 根据模型的错误率调整数据点的权重,使后续模型关注错误较大的样本。

加权平均: 将多个弱模型的预测结果加权平均,以得到最终的回归预测。

3. Transformer-Adaboost结合

将Transformer和AdaBoost结合起来可以充分发挥两者的优势。以下是具体流程:

数据准备:

将数据分为训练集和测试集。每个样本包括多个输入特征和一个目标值(单输出)。

Transformer模型训练:

设计一个Transformer网络来处理输入特征。Transformer的编码器部分用于提取输入数据的复杂特征。

训练Transformer模型,使其能够准确预测回归目标值。损失函数通常是均方误差(MSE)。

生成初步预测:

使用训练好的Transformer模型对训练集和测试集进行预测,得到初步的回归预测值。

AdaBoost增强:

将Transformer的预测结果作为基学习器的一部分。

使用AdaBoost对初步预测进行加权,训练多个简单的回归模型(如线性回归),以改进预测结果。

通过加权平均多个回归模型的预测,形成最终的回归预测。

模型评估:

使用标准回归指标(如均方误差、平均绝对误差)评估最终模型的性能。

4. 优点与挑战

优点:

复杂关系建模: Transformer可以捕捉输入特征之间的复杂关系,而AdaBoost可以进一步提高预测精度。

长程依赖: Transformer特别适合处理具有长程依赖的数据。

增强鲁棒性: AdaBoost通过加权提高了模型对数据噪声的鲁棒性。

总的来说,Transformer-Adaboost多输入单输出回归预测模型通过结合Transformer的特征提取能力和AdaBoost的增强能力,可以在处理复杂回归任务时实现更高的预测精度。

5 预测结果

完整代码与数据集下载:https://mbd.pub/o/bread/ZpuVm5xu

相关推荐
bubiyoushang8882 小时前
基于LSTM神经网络的短期风速预测实现方案
人工智能·神经网络·lstm
孤狼warrior10 小时前
图像生成 Stable Diffusion模型架构介绍及使用代码 附数据集批量获取
人工智能·python·深度学习·stable diffusion·cnn·transformer·stablediffusion
努力毕业的小土博^_^10 小时前
【AI课程领学】第十二课 · 超参数设定与网络训练(课时1) 网络超参数设定:从“要调什么”到“怎么系统地调”(含 PyTorch 可复用模板)
人工智能·pytorch·python·深度学习·神经网络·机器学习
陈天伟教授10 小时前
人工智能应用-机器视觉:AI 鉴伪 08.虚假图片鉴别
人工智能·神经网络·数码相机·生成对抗网络·dnn
楚来客12 小时前
AI基础概念之十三:Transformer 算法结构相比传统神经网络的改进
深度学习·神经网络·transformer
陈天伟教授12 小时前
人工智能应用-机器视觉:AI 鉴伪 07.虚假图片鉴别
人工智能·神经网络·数码相机·生成对抗网络·dnn
BHXDML13 小时前
基于卷积神经网络通用手写体识别应用实验
人工智能·神经网络·cnn
陈天伟教授14 小时前
人工智能应用-机器视觉:AI 鉴伪 03.换脸伪造技术
人工智能·神经网络·生成对抗网络
轴测君14 小时前
卷积神经网络的开端:LeNet−5
人工智能·神经网络·cnn
海绵宝宝de派小星16 小时前
手写实现一个简单神经网络
人工智能·深度学习·神经网络·ai