动手学深度学习(pytorch土堆)-03常见的Transforms

Compose

transforms.Compose 是 PyTorch 中的一个函数,用于将多个图像变换操作组合在一起,形成一个变换流水线。这样可以将一系列的图像处理操作整合为一个步骤,便于对图像进行批量预处理或增强。

基本用法

transforms.Compose 接受一个列表,列表中的每个元素是一个变换操作。这些操作会按照给定的顺序依次作用在输入的图像上。

c 复制代码
  Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
        >>>     transforms.PILToTensor(),
        >>>     transforms.ConvertImageDtype(torch.float),
        >>> ])
c 复制代码
#compose
trans_resize1=transforms.Resize((512,512))
trans_compose=transforms.Compose([trans_resize1,tensor_trans])
img_resize_1=trans_compose(img)

ToTensor

将图片变为Tensor数据类型

normalize(归一化)

计算公式:output[channel] = (input[channel] - mean[channel](均值)) / std[channel](标准差)

c 复制代码
Normalize

print(tensor_img[0][0][0])
trans_norm=transforms.Normalize([0.5,0.5,0.5],[0.5,0.5,0.5])
img_norm= trans_norm(tensor_img)
print(img_norm[0][0][0])
writer.add_image("Noramlize",img_norm)
writer.close()

归一化图片前后对比

Resize

transforms.Resize 是 PyTorch 中 torchvision.transforms 模块的一个变换操作,用于调整图像的大小。它可以将输入图像调整为指定的尺寸,通常用于图像预处理以确保所有输入图像具有相同的尺寸,这对深度学习模型的输入非常重要。

size: 目标尺寸,可以是单个整数或一个元组 (height, width)。

如果是单个整数:将按保持宽高比的方式调整图像,较短的一边将被调整为该值。

如果是元组 (height, width):将直接调整图像为指定的高度和宽度。

c 复制代码
#Resize
print(img.size)
trans_resize=transforms.Resize((512,512))
img_resize =trans_resize(img)
img_resize_tensor=tensor_trans(img_resize)
print(img_resize_tensor)
writer.add_image("img_resize",img_resize_tensor,0)
writer.close()

整体代码

c 复制代码
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
from torchvision.transforms import ToTensor

img_path="hymenoptera_data/train/ants/0013035.jpg"
img=Image.open(img_path)
writer=SummaryWriter("logs")
tensor_trans=ToTensor()
tensor_img=tensor_trans(img)#将img图片转换成tensor数据类型的图片
# print(tensor_img)
writer.add_image("img",tensor_img,2)

#Normalize
print(tensor_img[0][0][0])
trans_norm=transforms.Normalize([0.5,0.5,0.5],[0.5,0.5,0.5])
img_norm= trans_norm(tensor_img)
print(img_norm[0][0][0])
writer.add_image("Noramlize",img_norm,1)
#Resize
print(img.size)
trans_resize=transforms.Resize((512,512))
img_resize =trans_resize(img)
img_resize_tensor=tensor_trans(img_resize)
print(img_resize_tensor)
writer.add_image("img_resize",img_resize_tensor,0)
#compose
trans_resize1=transforms.Resize((512,512))
trans_compose=transforms.Compose([trans_resize1,tensor_trans])
img_resize_1=trans_compose(img)
writer.close()
相关推荐
idealmu2 小时前
知识蒸馏(KD)详解一:认识一下BERT 模型
人工智能·深度学习·bert
Cathyqiii3 小时前
生成对抗网络(GAN)
人工智能·深度学习·计算机视觉
ai产品老杨4 小时前
打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程的智慧工业开源了
人工智能·开源·音视频·能源
小陈phd4 小时前
高级RAG策略学习(五)——llama_index实现上下文窗口增强检索RAG
人工智能
凯禾瑞华养老实训室6 小时前
人才教育导向下:老年生活照护实训室助力提升学生老年照护服务能力
人工智能
湫兮之风7 小时前
Opencv: cv::LUT()深入解析图像块快速查表变换
人工智能·opencv·计算机视觉
Christo38 小时前
TFS-2018《On the convergence of the sparse possibilistic c-means algorithm》
人工智能·算法·机器学习·数据挖掘
qq_508823408 小时前
金融量化指标--2Alpha 阿尔法
大数据·人工智能
黑金IT8 小时前
`.cursorrules` 与 `.cursorcontext`:Cursor AI 编程助手时代下的“双轨配置”指南
人工智能
dlraba8029 小时前
基于 OpenCV 的信用卡数字识别:从原理到实现
人工智能·opencv·计算机视觉