李宏毅2023机器学习HW15-Few-shot Classification

文章目录

  • Link
  • [Task: Few-shot Classification](#Task: Few-shot Classification)
  • Baseline
    • [Simple---transfer learning](#Simple—transfer learning)
    • [Medium --- FO-MAML](#Medium — FO-MAML)
    • [Strong --- MAML](#Strong — MAML)

Kaggle

Task: Few-shot Classification

The Omniglot dataset

  • background set: 30 alphabets
  • evaluation set: 20 alphabets
  • Problem setup: 5-way 1-shot classification

Omniglot数据集

Baseline

Simple---transfer learning

直接把sample code运行即可

  • traing:
    对随机选择的5个任务进行正常分类训练验证/测试
  • validation / testing:
    对五个 Support Images 进行微调,并对Query Images进行推理

Slover首先从训练集中选择5个任务,然后对选择的5个任务进行正常分类训练。在推理中,模型在支持集support set图像上微调inner_train_step步骤,然后在查询集Query Set图像上进行推理。

为了与元学习Slover保持一致,基本Slover具有与元学习Slover完全相同的输入输出格式

python 复制代码
def BaseSolver(
    model,
    optimizer,
    x,
    n_way,
    k_shot,
    q_query,
    loss_fn,
    inner_train_step=1,
    inner_lr=0.4,
    train=True,
    return_labels=False,
):
    criterion, task_loss, task_acc = loss_fn, [], []
    labels = []

    for meta_batch in x:
        # Get data
        support_set = meta_batch[: n_way * k_shot]
        query_set = meta_batch[n_way * k_shot :]

        if train:
            """ training loop """
            # Use the support set to calculate loss
            labels = create_label(n_way, k_shot).to(device)
            logits = model.forward(support_set)
            loss = criterion(logits, labels)

            task_loss.append(loss)
            task_acc.append(calculate_accuracy(logits, labels))
        else:
            """ validation / testing loop """
            # First update model with support set images for `inner_train_step` steps
            fast_weights = OrderedDict(model.named_parameters())


            for inner_step in range(inner_train_step):
                # Simply training
                train_label = create_label(n_way, k_shot).to(device)
                logits = model.functional_forward(support_set, fast_weights)
                loss = criterion(logits, train_label)

                grads = torch.autograd.grad(loss, fast_weights.values(), create_graph=True)
                # Perform SGD
                fast_weights = OrderedDict(
                    (name, param - inner_lr * grad)
                    for ((name, param), grad) in zip(fast_weights.items(), grads)
                )

            if not return_labels:
                """ validation """
                val_label = create_label(n_way, q_query).to(device)

                logits = model.functional_forward(query_set, fast_weights)
                loss = criterion(logits, val_label)
                task_loss.append(loss)
                task_acc.append(calculate_accuracy(logits, val_label))
            else:
                """ testing """
                logits = model.functional_forward(query_set, fast_weights)
                labels.extend(torch.argmax(logits, -1).cpu().numpy())

    if return_labels:
        return labels

    batch_loss = torch.stack(task_loss).mean()
    task_acc = np.mean(task_acc)

    if train:
        # Update model
        model.train()
        optimizer.zero_grad()
        batch_loss.backward()
        optimizer.step()

    return batch_loss, task_acc

Medium --- FO-MAML

FOMAML(First-Order MAML)是MAML(Model-Agnostic Meta-Learning)的一种简化版本。MAML是一种元学习算法,旨在通过训练模型使其能够在少量新数据上快速适应新任务。FOMAML通过忽略二阶导数来简化MAML的计算过程,从而提高计算效率。它在许多情况下表现良好,尤其是在计算资源有限的情况下。然而,它也可能在某些任务上表现不如完整的MAML。

MAML的核心思想是通过在多个任务上进行训练,使得模型能够在面对新任务时,只需少量数据就能快速收敛到一个好的参数配置。具体来说,MAML的训练过程包括两个层次的优化:

  • 内层优化(Inner Loop):在每个任务上进行少量的梯度更新,以适应该任务。

  • 外层优化(Outer Loop):在所有任务上进行梯度更新,以优化模型的初始参数,使得模型在面对新任务时能够快速适应。

python 复制代码
""" Inner Loop Update """
grads = torch.autograd.grad(loss, fast_weights.values(), create_graph=False) # create_graph=False:这个参数表示在计算梯度时不创建计算图。在FOMAML中,我们只关心一阶导数,因此不需要创建计算图
            fast_weights = OrderedDict(
                (name, param - inner_lr * grad)
                for ((name, param), grad) in zip(fast_weights.items(), grads)
            )


""" Outer Loop Update """
        # TODO: Finish the outer loop update
        # raise NotimplementedError
        meta_batch_loss.backward()
        optimizer.step()

Strong --- MAML

python 复制代码
""" Inner Loop Update """
grads = torch.autograd.grad(loss, fast_weights.values(), create_graph=True)
            fast_weights = OrderedDict(
                (name, param - inner_lr * grad)
                for ((name, param), grad) in zip(fast_weights.items(), grads)
            )


""" Outer Loop Update """
        # TODO: Finish the outer loop update
        # raise NotimplementedError
        meta_batch_loss.backward()
        optimizer.step()
相关推荐
延凡科技19 分钟前
无人机低空智能巡飞巡检平台:全域感知与智能决策的低空作业中枢
大数据·人工智能·科技·安全·无人机·能源
2501_9413297222 分钟前
YOLOv8-SEAMHead改进实战:书籍检测与识别系统优化方案
人工智能·yolo·目标跟踪
晓翔仔2 小时前
【深度实战】Agentic AI 安全攻防指南:基于 CSA 红队测试手册的 12 类风险完整解析
人工智能·安全·ai·ai安全
百家方案2 小时前
2026年数据治理整体解决方案 - 全1066页下载
大数据·人工智能·数据治理
北京耐用通信2 小时前
工业自动化中耐达讯自动化Profibus光纤链路模块连接RFID读写器的应用
人工智能·科技·物联网·自动化·信息与通信
小韩博4 小时前
一篇文章讲清AI核心概念之(LLM、Agent、MCP、Skills) -- 从解决问题的角度来说明
人工智能
沃达德软件4 小时前
人工智能治安管控系统
图像处理·人工智能·深度学习·目标检测·计算机视觉·目标跟踪·视觉检测
高工智能汽车5 小时前
爱芯元智通过港交所聆讯,智能汽车芯片市场格局加速重构
人工智能·重构·汽车
大力财经5 小时前
悬架、底盘、制动被同时重构,星空计划想把“驾驶”变成一种系统能力
人工智能
梁下轻语的秋缘6 小时前
Prompt工程核心指南:从入门到精通,让AI精准响应你的需求
大数据·人工智能·prompt