一个开源的大语言模型(LLM)服务工具,支持Llama 3.1、Phi 3、Mistral、Gemma 2 等, 87.4k star你必须拥有(附源码)

这一年来,AI 发展的越来越快,大模型使用的门槛也越来越低,每个人都可以在自己的本地运行大模型。之前也给大家介绍过一些可以在本地运行大模型的项目,今天再给大家介绍一个最厉害的开源大模型服务框架------ollama。

项目介绍

Ollama 是一个开源的大语言模型(LLM)服务工具,它允许用户在本地环境快速实验、管理和部署大型语言模型。它支持多种流行的开源大型语言模型,如 Llama 3.1、Phi 3、Mistral、Gemma 2 等,并且可以通过命令行界面轻松下载、运行和管理这些模型。

Ollama 的出现是为了降低使用大型语言模型的门槛,是让大型语言模型更加普及和易于访问。

项目安装

既然说到要降低门槛,Ollama 的安装也自然是非常的方便了。

Ollama 支持 macOS、Windows 和 Linux 操作系统,同时也提供了 Docker 镜像,方便在不同环境中部署。

  • macOS : 可以通过 Homebrew 安装,使用命令 brew install ollama。也可以直接下载安装包运行。

  • Windows: 需要下载安装包并运行。

  • Linux : 可以通过包管理器或使用命令 curl -fsSL ``https://ollama.com/install.sh`` | sh安装。

  • Docker : 可以使用 docker pull ollama/ollama 命令拉取镜像,并运行容器。

这里以 macOS 为例,下载了 ollama 的安装包后,直接双击运行这个可爱羊驼的应用,程序会提示你将应用移动到 application 文件夹,并且有后续的提示操作,我们按照指引去安装就可以了。

项目使用

安装完成后,我们可以直接执行 ollama 应用启动,也可以在命令行中执行 ollama serve 来启动 Ollama 服务。

当然,现在的我们主要在命令行中去操作 ollama。

执行 ollama list:可以列出已下载的模型,如图:

执行 ollama pull <model> 可以从远程仓库拉取模型。

执行 ollama run <model> 可以运行指定的模型,我们使用 ollama run llama3:8b 来运行已经安装的模型,并且开始对话,如图:

web 界面

如果都是用命令行交互,还是挺麻烦的。这里再给大家介绍一个好用的 ollama 的 web 界面:open-webui。

这也是一个开源项目,我们可以使用 docker 来快速部署:

docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main

之后在浏览器访问 localhost:3000,可以打开一个和 ChatGPT 很像的页面:

点击上方的"选择一个模型",便可以看到 ollama 中已经下载的模型,选中后直接开启聊天就可以啦。

总结

Ollama 是一个功能强大且易于使用的工具,它为本地部署和运行大型语言模型提供了一个简单而有效的方法。无论是研究、开发还是日常使用,Ollama 都能满足用户对大型语言模型的需求。Ollama 拥有庞大的社区用户和相关的开源项目,配合 open-webui,我们可以更好的使用 Ollama,并为朋友们提供一个类似于 ChatGPT 的对话界面。

感兴趣的朋友们,赶紧去试试吧。

项目地址:
https://github.com/ollama/ollama
https://github.com/open-webui/open-webui
相关推荐
井底哇哇29 分钟前
ChatGPT是强人工智能吗?
人工智能·chatgpt
Coovally AI模型快速验证34 分钟前
MMYOLO:打破单一模式限制,多模态目标检测的革命性突破!
人工智能·算法·yolo·目标检测·机器学习·计算机视觉·目标跟踪
AI浩1 小时前
【面试总结】FFN(前馈神经网络)在Transformer模型中先升维再降维的原因
人工智能·深度学习·计算机视觉·transformer
可为测控1 小时前
图像处理基础(4):高斯滤波器详解
人工智能·算法·计算机视觉
Ai 编码助手2 小时前
在 Go 语言中如何高效地处理集合
开发语言·后端·golang
小丁爱养花2 小时前
Spring MVC:HTTP 请求的参数传递2.0
java·后端·spring
一水鉴天2 小时前
为AI聊天工具添加一个知识系统 之63 详细设计 之4:AI操作系统 之2 智能合约
开发语言·人工智能·python
Channing Lewis2 小时前
什么是 Flask 的蓝图(Blueprint)
后端·python·flask
倔强的石头1062 小时前
解锁辅助驾驶新境界:基于昇腾 AI 异构计算架构 CANN 的应用探秘
人工智能·架构
硬汉嵌入式3 小时前
《安富莱嵌入式周报》第349期:VSCode正式支持Matlab调试,DIY录音室级麦克风,开源流体吊坠,物联网在军工领域的应用,Unicode字符压缩解压
vscode·matlab·开源