一个开源的大语言模型(LLM)服务工具,支持Llama 3.1、Phi 3、Mistral、Gemma 2 等, 87.4k star你必须拥有(附源码)

这一年来,AI 发展的越来越快,大模型使用的门槛也越来越低,每个人都可以在自己的本地运行大模型。之前也给大家介绍过一些可以在本地运行大模型的项目,今天再给大家介绍一个最厉害的开源大模型服务框架------ollama。

项目介绍

Ollama 是一个开源的大语言模型(LLM)服务工具,它允许用户在本地环境快速实验、管理和部署大型语言模型。它支持多种流行的开源大型语言模型,如 Llama 3.1、Phi 3、Mistral、Gemma 2 等,并且可以通过命令行界面轻松下载、运行和管理这些模型。

Ollama 的出现是为了降低使用大型语言模型的门槛,是让大型语言模型更加普及和易于访问。

项目安装

既然说到要降低门槛,Ollama 的安装也自然是非常的方便了。

Ollama 支持 macOS、Windows 和 Linux 操作系统,同时也提供了 Docker 镜像,方便在不同环境中部署。

  • macOS : 可以通过 Homebrew 安装,使用命令 brew install ollama。也可以直接下载安装包运行。

  • Windows: 需要下载安装包并运行。

  • Linux : 可以通过包管理器或使用命令 curl -fsSL ``https://ollama.com/install.sh`` | sh安装。

  • Docker : 可以使用 docker pull ollama/ollama 命令拉取镜像,并运行容器。

这里以 macOS 为例,下载了 ollama 的安装包后,直接双击运行这个可爱羊驼的应用,程序会提示你将应用移动到 application 文件夹,并且有后续的提示操作,我们按照指引去安装就可以了。

项目使用

安装完成后,我们可以直接执行 ollama 应用启动,也可以在命令行中执行 ollama serve 来启动 Ollama 服务。

当然,现在的我们主要在命令行中去操作 ollama。

执行 ollama list:可以列出已下载的模型,如图:

执行 ollama pull <model> 可以从远程仓库拉取模型。

执行 ollama run <model> 可以运行指定的模型,我们使用 ollama run llama3:8b 来运行已经安装的模型,并且开始对话,如图:

web 界面

如果都是用命令行交互,还是挺麻烦的。这里再给大家介绍一个好用的 ollama 的 web 界面:open-webui。

这也是一个开源项目,我们可以使用 docker 来快速部署:

复制代码
docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main

之后在浏览器访问 localhost:3000,可以打开一个和 ChatGPT 很像的页面:

点击上方的"选择一个模型",便可以看到 ollama 中已经下载的模型,选中后直接开启聊天就可以啦。

总结

Ollama 是一个功能强大且易于使用的工具,它为本地部署和运行大型语言模型提供了一个简单而有效的方法。无论是研究、开发还是日常使用,Ollama 都能满足用户对大型语言模型的需求。Ollama 拥有庞大的社区用户和相关的开源项目,配合 open-webui,我们可以更好的使用 Ollama,并为朋友们提供一个类似于 ChatGPT 的对话界面。

感兴趣的朋友们,赶紧去试试吧。

复制代码
项目地址:
https://github.com/ollama/ollama
https://github.com/open-webui/open-webui
相关推荐
Victor35615 分钟前
Netty(16)Netty的零拷贝机制是什么?它如何提高性能?
后端
Victor35622 分钟前
Netty(15)Netty的线程模型是什么?它有哪些线程池类型?
后端
Honmaple28 分钟前
Spring AI 2.x 发布:全面拥抱 Java 21,Redis 史诗级增强
java·人工智能·spring
古城小栈28 分钟前
区块链 + AI:医疗诊断模型存证上链技术实践与探索
人工智能·区块链
丹宇码农35 分钟前
Index-TTS2 从零到一:完整安装与核心使用教程
人工智能·ai·tts
canonical_entropy1 小时前
Nop入门:增加DSL模型解析器
spring boot·后端·架构
AKAMAI1 小时前
Akamai Cloud客户案例 | IPPRA的简洁、经济、易用的云计算服务
人工智能·云计算
渣娃-小晴晴1 小时前
java集合在并发环境下应用时的注意事项
java·后端
Exploring1 小时前
从零搭建使用 Open-AutoGML 搜索附近的美食
android·人工智能