RockTrack:A 3D Robust Multi-Camera-Ken Multi-Object Tracking Framework

RockTrack: A 3D Robust Multi-Camera-Ken Multi-Object Tracking Framework

基础信息

  1. 单位:哈尔滨理工大学
  2. 论文:https://arxiv.org/pdf/2409.11749
  3. 代码:https://github.com/lixiaoyu2000/Rock-Track (未全部放出)
  4. 数据集:nuScenes

摘要

  1. 随着检测技术的提高,多目标跟踪算法快速发展,特别是经济实惠的多相机跟踪。
  2. 现有的多相机端到端跟踪技术,由于训练的原因,导致局限于单一的检测器,导致灵活性降低了。
  3. 此外,目前的通用跟踪器忽略了多摄像机检测器的特性,比如:运动观测的不可靠性和视觉信息的可行性。
  4. 为了解决这些挑战,本文提出了RockTrack,一种用于多相机检测器的3D MOT方法。
  5. 遵循TBD框架,RockTrack与各种现成的探测器兼容。
  6. RockTrack包含了一个置信引导的预处理模块,从单个探测器的不同表示空间中提取可靠的运动和图像观测结果。
  7. 然后将这些观察结果融合在一个关联模块中,该模块利用几何和外观线索来减少不匹配。
  8. 得到的匹配通过分阶段估计过程传播,形成启发式噪声建模的基础。
  9. 此外,我们引入了一种新的外观相似度量,明确地描述对象亲和力在多相机设置。
    10.RockTrack在59.1%的AMOTA的视觉跟踪排行榜上取得了最先进的性能,同时展示了令人印象深刻的计算效率。

引言

contributions

  1. 我们提出了RockTrack,一种基于TBD框架的鲁棒和灵活的3D MOT方法,专门为多视图探测器设计。

  2. 我们引入了一种新的多视图外观相似度度量来明确地捕获对象间的亲和力(affinity)

  3. 我们开发了一个可扩展的几何滤波器和适应运动测量噪声,以提高空间可靠性在多相机探测器。我们还提出了一种伪视觉跟踪器滤波器,并实现了多模态匹配,以有效地利用视觉信息。

  4. RockTrack建立了一个新的最先进的,59.1%的AMOTA在仅相机test排行榜(多镜头跟踪)。

相关工作

Camera-only 3D Detection.

Camera-only 3D MOT.

方法

A. Confidence-Guided Pre-Processing Module

B. Motion-Appearance Data Association Module

C. Noise-Adaptive Motion Module

D. Lifecycle Module

实验

阅读时间(2024年9月19日)
相关推荐
格调UI成品8 小时前
[特殊字符] 数据可视化结合 three.js:让 3D 呈现更精准,3 个优化经验谈
javascript·3d·信息可视化
The moon forgets9 小时前
ALOcc: Adaptive Lifting-based 3D Semantic Occupancy and
深度学习·3d
向宇it2 天前
【unity小技巧】封装unity适合2D3D进行鼠标射线检测,获取鼠标位置信息检测工具类
游戏·3d·unity·游戏引擎
中科米堆2 天前
中科米堆CASAIM金属件自动3d测量外观尺寸三维检测解决方案
人工智能·3d·视觉检测
山楂树の2 天前
模型优化——在MacOS 上使用 Python 脚本批量大幅度精简 GLB 模型(通过 Blender 处理)
python·macos·3d·图形渲染·blender
Blossom.1182 天前
基于深度学习的医学图像分析:使用BERT实现医学文本分类
人工智能·深度学习·机器学习·3d·分类·cnn·bert
dllmayday2 天前
3D空间中的变换矩阵
线性代数·3d·矩阵
渲吧-云渲染2 天前
材质:3D渲染的隐形支柱
3d·材质
sunbyte3 天前
50天50个小项目 (Vue3 + Tailwindcss V4) ✨ | 3dBackgroundBoxes(3D背景盒子组件)
前端·javascript·vue.js·3d·vue
广州华锐视点3 天前
3D 网上展厅,到底是什么?
3d