【线性回归模型】

线性回归模型

创建一些带标签的数据集𝐷 = {(𝒙1, 𝑦1) , (𝒙2, 𝑦2 ), ... , (𝒙𝑚, 𝑦𝑚) }

x为特征,映射到对应的标签y,再引入偏置b

线性回归模型的函数表达式可以用下面的式子

来表达:

𝑓(𝑥) = 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑛𝑥𝑛 + 𝑏

对比函数(误差函数)

即将参数模型预测出的y与真实的y做对比,来调节参数和权重,以及偏置使得误差最小

即找到一些w使得J(x)最小甚至等于0

Loss值计算公式:

f(x)就是线性模型预测值,y为真实值,这里把b省略掉了便于计算。

最小二乘法

这里loss值(即损失值)的函数为开口向上的二次函数,那一定有个最小值

就是对w求导,导数为0时取得极小值,w=y/x时loss值最小

最小二乘法向量形式

将参数𝑏纳入到矩阵𝒘中,此时数据特征矩阵𝒙则为:

矩阵𝒘为:

得到线性回归模型的向量表达式如下式所示𝑓(𝑿) = 𝑿w

求解使得loss最小

还是仿造刚刚简易的最小二乘法求这个较复杂带矩阵表达式的最小loss值

很显然𝒙和𝒘都是一个矩阵,利用最小二乘法对这个矩阵求最优的𝒘矩阵参数。

计算的步骤如下所示

J ( ω ) = 1 2 ( f ( x ) − Y ) 2 J(\omega)=\frac{1}{2}(f(x)-Y)^2 J(ω)=21(f(x)−Y)2

这个 1 2 \frac{1}{2} 21只是方便之后计算,注意这里Xw是两个矩阵
J ( ω ) = 1 2 ( X w − Y ) 2 J(\omega)=\frac{1}{2}(Xw-Y)^2 J(ω)=21(Xw−Y)2

在线性代数里可写为它的转置乘以它本身 J ( ω ) = 1 2 ( X w − Y ) T ( X w − Y ) J(\omega)=\frac{1}{2}(Xw-Y)^T(Xw-Y) J(ω)=21(Xw−Y)T(Xw−Y)

转置拿进去
J ( ω ) = 1 2 ( X T w T − Y T ) ( X w − Y ) J(\omega)=\frac{1}{2}(X^Tw^T-Y^T)(Xw-Y) J(ω)=21(XTwT−YT)(Xw−Y)
= 1 2 ( X T w T X w − Y T X w − X T w T Y + Y Y T ) =\frac{1}{2}(X^Tw^TXw-Y^TXw-X^Tw^TY+YY^T) =21(XTwTXw−YTXw−XTwTY+YYT)
我们求 J ( ω ) J(\omega) J(ω)的导数为0时有loss的极小值

好,来求一下w的偏导数
∂ J ( ω ) ∂ w = 1 2 ( X T w T X w ∂ w − Y T X w ∂ w − X T w T Y ∂ w ) \frac{\partial J(\omega)}{\partial w}=\frac{1}{2}(\frac{X^Tw^TXw}{\partial w}-\frac{Y^TXw}{\partial w}-\frac{X^Tw^TY}{\partial w}) ∂w∂J(ω)=21(∂wXTwTXw−∂wYTXw−∂wXTwTY)

常数项 Y Y T YY^T YYT为0,看看对矩阵求导的公式知识点吧,如

套公式则
∂ J ( ω ) ∂ w = 1 2 ( 2 X X T w − X T Y − X T Y ) \frac{\partial J(\omega)}{\partial w}=\frac{1}{2}(2XX^Tw-X^TY-X^TY) ∂w∂J(ω)=21(2XXTw−XTY−XTY)
∂ J ( ω ) ∂ w = X X T w − X T Y ) \frac{\partial J(\omega)}{\partial w}=XX^Tw-X^TY) ∂w∂J(ω)=XXTw−XTY)

令 ∂ J ( ω ) ∂ w = 0 \frac{\partial J(\omega)}{\partial w}=0 ∂w∂J(ω)=0则 X X T w − X T Y = 0 XX^Tw-X^TY=0 XXTw−XTY=0
w = ( X X T ) − 1 X T Y w=(XX^T)^{-1}X^TY w=(XXT)−1XTY
但是 ( X X T ) − 1 (XX^T)^{-1} (XXT)−1大多数时候是无解的,所以最小二乘法多数情况下不能来求导得出loss最小值
于是梯度下降法就上线了

相关推荐
青云交19 分钟前
Java 大视界 -- Java 大数据机器学习模型在自然语言处理中的对话系统多轮交互优化与用户体验提升
java·大数据·机器学习·自然语言处理·对话系统·多轮交互
小李小李快乐不已24 分钟前
图论理论基础(5)
数据结构·c++·算法·机器学习·动态规划·图论
【建模先锋】38 分钟前
精品数据分享 | 锂电池数据集(六)基于深度迁移学习的锂离子电池实时个性化健康状态预测
人工智能·深度学习·机器学习·迁移学习·锂电池寿命预测·锂电池数据集·寿命预测
xier_ran11 小时前
关键词解释:对比学习(Contrastive Learning)
人工智能·深度学习·学习·机器学习·对比学习
Jay200211112 小时前
【机器学习】27 异常检测(密度估计)
人工智能·机器学习
Blossom.11813 小时前
基于多智能体强化学习的云资源调度系统:如何用MARL把ECS成本打下来60%
人工智能·python·学习·决策树·机器学习·stable diffusion·音视频
蓝域小兵13 小时前
齐次方程组和非齐次方程组有什么区别
人工智能·算法·机器学习
会挠头但不秃15 小时前
2.逻辑回归模型
算法·机器学习·逻辑回归
大千AI助手15 小时前
模糊集合理论:从Zadeh奠基到现代智能系统融合
人工智能·机器学习·集合·模糊理论·大千ai助手·模糊集合·fuzzysets
工业机器视觉设计和实现16 小时前
我的第三个cudnn程序(cifar10改cifar100)
人工智能·深度学习·机器学习