flink 例子(scala)

import org.apache.flink.api.common.functions.RuntimeContext

import org.apache.flink.api.common.serialization.SimpleStringSchema

import org.apache.flink.api.java.utils.ParameterTool

import org.apache.flink.api.scala._

import org.apache.flink.runtime.state.filesystem.FsStateBackend

import org.apache.flink.streaming.api.TimeCharacteristic

import org.apache.flink.streaming.api.scala.DataStream

import org.apache.flink.streaming.connectors.elasticsearch.{ElasticsearchSinkFunction, RequestIndexer}

import org.apache.flink.streaming.connectors.elasticsearch7.ElasticsearchSink

import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer

import org.elasticsearch.action.DocWriteRequest

import org.elasticsearch.action.index.IndexRequest

import org.elasticsearch.client.Requests

object demo{

def main(args: Array[String]): Unit = {

val env = StreamExecutionEnvironment.getExecutionEnvironment

//需要状态开启下面的配置

//env.setStateBackend(new RocksDBStateBackend(s"hdfs://${namenodeID}", true))//hdfs 作为状态后端

//env.enableCheckpointing(10 * 60 * 1000L)

//env.getCheckpointConfig.setCheckpointTimeout(10 * 60 * 1000L)

env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime) //处理时间

val props = new Properties

props.setProperty("bootstrap.servers", "host:6667")//有些是9092端口

props.setProperty("group.id", "groupId")

props.setProperty("retries", "10")

props.setProperty("retries.backoff.ms", "100")

props.put(ConsumerConfig.REQUEST_TIMEOUT_MS_CONFIG, "60000")

//是否配置了权限,有的话加上下面的配置

// props.setProperty("sasl.jaas.config","org.apache.kafka.common.security.plain.PlainLoginModule required username='' password='';")

//props.setProperty("security.protocol", "SASL_PLAINTEXT");

// props.setProperty("sasl.mechanism", "PLAIN")

val myConsumer = new FlinkKafkaConsumer[String]("topicName", new SimpleStringSchema(), props)

.setStartFromEarliest()//从什么时间开始读

val stream = env.addSource(myConsumer)

.map(m => {

val list= m.split("\t")

val id = list(1)

val ts = list(2)

Demo(id,ts)

})

val httpHosts = CP.getESConf

val esSinkBuilder = new ElasticsearchSink.Builder[Demo](

httpHosts,

new ElasticsearchSinkFunction[Demo] {

def process(element: Demo, ctx: RuntimeContext, indexer: RequestIndexer) {

val json = new java.util.HashMap[String, String]

json.put("@timestamp", element.ts)

json.put("id", element.id)

val rqst: IndexRequest = Requests.indexRequest

//.id("自定义id,不加会自动生成")

.id(element.id)

.index("indexName")

.source(json)

.opType(DocWriteRequest.OpType.INDEX)

indexer.add(rqst)

}

}

)

setESConf(esSinkBuilder, 50000)

stream.addSink(esSinkBuilder.build())

.uid("write-to-es")

.name("write-to-es")

env.execute(s"demo")

}

def setESConf[T](esSinkBuilder: ElasticsearchSink.Builder[T], numMaxActions: Int) {

esSinkBuilder.setBulkFlushMaxActions(numMaxActions)

esSinkBuilder.setBulkFlushMaxSizeMb(10)

esSinkBuilder.setBulkFlushInterval(10000)

esSinkBuilder.setBulkFlushBackoff(true)

esSinkBuilder.setBulkFlushBackoffDelay(2)

esSinkBuilder.setBulkFlushBackoffRetries(3)

esSinkBuilder.setRestClientFactory(new RestClientFactory {

override def configureRestClientBuilder(restClientBuilder: RestClientBuilder): Unit = {

restClientBuilder.setRequestConfigCallback(new RestClientBuilder.RequestConfigCallback() {

override def customizeRequestConfig(requestConfigBuilder: RequestConfig.Builder): RequestConfig.Builder = {

requestConfigBuilder.setConnectTimeout(12000)

requestConfigBuilder.setSocketTimeout(90000)

}

})

}

})

}

}

case class Demo(id: String, ts: String)

相关推荐
数智顾问6 小时前
破解 Shuffle 阻塞:Spark RDD 宽窄依赖在实时特征工程中的实战与未来
大数据·分布式·spark
盛小夏7 小时前
用链式风格写代码,就像在搭积木
scala
Giser探索家7 小时前
遥感卫星升轨 / 降轨技术解析:对图像光照、对比度的影响及工程化应用
大数据·人工智能·算法·安全·计算机视觉·分类
lisw057 小时前
数字化科技简化移民流程的 5 种方式
大数据·人工智能·机器学习
NewCarRen8 小时前
基于自动驾驶仿真软件的交通事故档案建模与分析
大数据·汽车功能安全
JAVA学习通8 小时前
OJ竞赛平台----C端题目列表
java·开发语言·jvm·vue.js·elasticsearch
JAVA学习通8 小时前
Replication(下):事务,一致性与共识
大数据·分布式·算法
vivo互联网技术9 小时前
vivo HDFS EC大规模落地实践
大数据·hdfs·大数据计算与存储·erasure coding
api_180079054609 小时前
异步数据采集实践:用 Python/Node.js 构建高并发淘宝商品 API 调用引擎
大数据·开发语言·数据库·数据挖掘·node.js
科研服务器mike_leeso9 小时前
41 年 7 次转型!戴尔从 PC 到 AI 工厂的技术跃迁与组织重构
大数据·人工智能·机器学习