Flink 与 Kubernetes (K8s)、YARN 和 Mesos集成对比

Flink 与 Kubernetes (K8s)、YARN 和 Mesos 的紧密集成,是 Flink 能够在不同分布式环境中高效运行的关键特性。

Flink 提供了与这些资源管理系统的深度集成,以便在多种集群管理环境下提交、运行和管理 Flink 作业。Flink 与 K8s、YARN 和 Mesos 集成的详细介绍:

Kubernetes 是现代化的容器编排平台,提供了自动化的容器部署、扩展和管理功能。Flink 对 Kubernetes 的原生支持使得它能够在容器化环境中运行,并具有良好的弹性和自动扩展能力。

特点:

  1. Kubernetes 集群模式 :Flink 可以作为 Kubernetes 原生的应用运行,Flink 的 JobManager 和
    TaskManager 都运行在 Kubernetes Pod 中。
  2. Session 集群模式:可以在 Kubernetes 上启动一个长期运行的 Flink Session 集群,多个作业共享这个集群。
  3. Job 集群模式:每个作业都有自己独立的 Flink 集群,作业结束时集群会自动终止,适用于短期作业。

Flink Kubernetes Operator:通过 Kubernetes Operator 模式,Flink 可以与 Kubernetes 更紧密集成,实现自动管理 Flink 集群生命周期、作业状态检查、自动扩展等功能。

持久化存储支持:Kubernetes 支持将 Flink 检查点、保存点等状态数据存储到分布式文件系统(如 HDFS、S3)或 Kubernetes 的持久卷(Persistent Volume, PV)。

高可用性:借助 Kubernetes 的服务发现和存储机制,Flink 的 JobManager 可以在失败后自动恢复。

使用场景:

微服务架构下的流数据处理。

需要快速部署和弹性扩展的实时处理任务。

云原生环境中容器化的应用程序部署。

YARN (Yet Another Resource Negotiator) 是 Hadoop 生态系统中的资源管理器,广泛用于管理 Hadoop 集群中的计算资源。

Flink 对 YARN 的深度集成使其能够充分利用 Hadoop 集群中的资源,并在大规模批处理和流处理任务中具备很好的扩展能力。

特点:

Session 集群模式:Flink 可以在 YARN 中启动一个长期运行的 Session 集群,并将多个作业提交到这个集群。

Per-job 集群模式:每个 Flink 作业都可以启动一个独立的 YARN 集群,当作业完成时,集群资源会被释放。

资源动态分配:Flink 支持根据作业需求动态申请和释放 YARN 中的资源。通过 YARN 的资源调度功能,Flink 作业可以扩展或缩减 TaskManager 的数量。

高可用性支持:通过 YARN 的资源管理功能,Flink 的 JobManager 可以在失败时自动重新启动,并从检查点恢复。

安全集成:Flink 与 YARN 集成时,能够支持 Kerberos 安全认证,确保作业的安全性。

使用场景:

在已有 Hadoop/YARN 集群中运行 Flink 作业。

需要与 Hadoop 生态系统(如 HDFS、Hive)的无缝集成。

大规模、分布式的批处理和流处理任务,尤其是数据密集型应用。

Mesos 是一种分布式资源管理器,旨在为多个不同的框架(如 Spark、Flink、Hadoop 等)提供资源调度。

Flink 与 Mesos 的集成可以帮助在多租户的集群中高效管理资源,并提供灵活的作业管理。

特点:

Session 模式:可以启动一个 Flink Session 集群,并在 Mesos 上长期运行,多个作业共享该集群。

Per-job 模式:为每个作业启动一个 Mesos 集群,作业结束时释放资源。

动态资源分配:通过 Mesos 的资源调度机制,Flink 可以动态地向 Mesos 申请或释放资源。根据作业的实际需求,自动调度资源到 TaskManager 节点。

持久化存储:Mesos 上运行的 Flink 集群可以通过外部存储(如 HDFS)来持久化检查点和保存点。

高可用性:Flink 在 Mesos 上运行时,JobManager 可以通过 Mesos 的主从架构实现高可用性。当 JobManager 失败时,Mesos 可以自动重新调度并恢复作业。

使用场景:

多租户环境中,需要协调多个框架共享资源的情况。

已经有 Mesos 集群的企业,可以无缝将 Flink 部署到 Mesos 中。

总结对比

场景选择

  • Kubernetes 更适合现代化的云原生应用,尤其是当你已经在使用 K8s 进行容器编排时,Flink 在 Kubernetes 上可以很好地支持自动扩展、容器化部署和微服务架构。

  • YARN 是经典的 Hadoop 生态系统的一部分,如果你已有 YARN 集群或需要与 Hadoop 集成,Flink 在 YARN 上运行是理想的选择。

  • Mesos 更适合多租户、大规模集群的资源共享和调度,如果你的集群中需要协调多个框架和作业共享资源,Mesos 是一个不错的选择。

相关推荐
喝醉酒的小白10 分钟前
Elasticsearch相关知识@1
大数据·elasticsearch·搜索引擎
边缘计算社区10 分钟前
首个!艾灵参编的工业边缘计算国家标准正式发布
大数据·人工智能·边缘计算
MZWeiei11 分钟前
Zookeeper的选举机制
大数据·分布式·zookeeper
MZWeiei11 分钟前
Zookeeper基本命令解析
大数据·linux·运维·服务器·zookeeper
学计算机的睿智大学生12 分钟前
Hadoop集群搭建
大数据·hadoop·分布式
szxinmai主板定制专家2 小时前
【国产NI替代】基于FPGA的32通道(24bits)高精度终端采集核心板卡
大数据·人工智能·fpga开发
年薪丰厚2 小时前
如何在K8S集群中查看和操作Pod内的文件?
docker·云原生·容器·kubernetes·k8s·container
zhangj11252 小时前
K8S Ingress 服务配置步骤说明
云原生·容器·kubernetes
岁月变迁呀2 小时前
kubeadm搭建k8s集群
云原生·容器·kubernetes