es查询语法

查询关键词的含义:

  1. match: 用于进行全文搜索,分析查询文本并与倒排索引中的词项进行匹配。

  2. term: 精确匹配,适用于非分析字段,如 keyword 类型。用于查找字段值完全相等的文档。

  3. bool : 组合多个查询条件。可以使用 must(必须满足)、should(可选满足)和 must_not(不能满足)来构建复杂查询。

  4. range: 用于查找字段值在某个范围内的文档。例如,可以查找年龄大于某个值的用户。

  5. wildcard : 使用通配符(如 *?)进行模糊匹配。适用于匹配包含特定模式的字段值。

  6. fuzzy: 模糊匹配,允许一定的拼写错误或相似度。通常用于文本字段。

  7. aggregations: 用于统计和分析数据,比如计数、求和、平均等。适用于对结果集进行聚合。

  8. size: 定义返回结果的文档数量。

  9. from: 用于分页,定义从结果集的哪个位置开始返回文档。

  10. sort: 用于对结果进行排序,可以根据一个或多个字段进行升序或降序排序。

  11. should 是用于 bool 查询的一个子句,它允许你指定可选的匹配条件。使用 should 的查询具有以下特点:

should 特点

  1. 可选匹配 :在 should 中列出的条件不是必需的,只要至少满足一个条件,文档就会被包含在结果中。

  2. 加权 :如果一个文档匹配多个 should 条件,它的评分会更高。这可以帮助你根据相关性对结果进行排序。

  3. 组合查询 :可以与 mustmust_not 一起使用,以创建复杂的查询逻辑。

  1. 简单查询

查找所有文档:

json

GET /users/_search
{
"query": {
"match_all": {}
}
}

  1. 匹配查询

查找名称为 "Alice" 的用户:

json

GET /users/_search
{
"query": {
"match": {
"name": "Alice"
}
}
}

  1. 布尔查询

查找年龄大于 25 且兴趣包含 "reading" 的用户:

json

GET /users/_search
{
"query": {
"bool": {
"must": [
{ "range": { "age": { "gt": 25 } } },
{ "match": { "interests": "reading" } }
]
}
}
}

  1. 过滤查询

查找居住在纽约的用户:

json

GET /users/_search
{
"query": {
"term": {
"address.city": "New York"
}
}
}

  1. 聚合查询

统计不同兴趣的用户数量:

json

GET /users/_search
{
"size": 0,
"aggs": {
"interests_count": {
"terms": {
"field": "interests"
}
}
}
}

  1. 组合查询

查找年龄在 20 到 40 之间,且居住在纽约的用户:

json

GET /users/_search
{
"query": {
"bool": {
"must": [
{ "range": { "age": { "gte": 20, "lte": 40 } } },
{ "term": { "address.city": "New York" } }
]
}
}
}

相关推荐
2501_933670795 分钟前
2026年中专大数据专业可考取的证书
大数据
W***r2614 分钟前
SpringBoot整合easy-es
spring boot·后端·elasticsearch
oMcLin18 分钟前
如何在Ubuntu 22.04 LTS上优化PostgreSQL 14集群,提升大数据查询的响应速度与稳定性?
大数据·ubuntu·postgresql
信创天地37 分钟前
核心系统去 “O” 攻坚:信创数据库迁移的双轨运行与数据一致性保障方案
java·大数据·数据库·金融·架构·政务
それども40 分钟前
ES KQL 支持词频统计吗
elasticsearch
zhyf1191 小时前
Max395(ubuntu24.04)AMD显卡GLM-4.7-UD-IQ1-M量化模型部署手册
大数据·elasticsearch·搜索引擎
小北方城市网1 小时前
微服务接口设计实战指南:高可用、易维护的接口设计原则与规范
java·大数据·运维·python·微服务·fastapi·数据库架构
武子康2 小时前
大数据-210 如何在Scikit-Learn中实现逻辑回归及正则化详解(L1与L2)
大数据·后端·机器学习
xiaobaishuoAI2 小时前
全链路性能优化实战指南:从瓶颈定位到极致优化
大数据·人工智能·科技·百度·geo
乾元2 小时前
如何把 CCIE / HCIE 的实验案例改造成 AI 驱动的工程项目——从“实验室能力”到“可交付系统”的完整迁移路径
大数据·运维·网络·人工智能·深度学习·安全·机器学习