OpenCV特征检测(4)检测图像中的角点函数cornerHarris()的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

Harris 角点检测器。

该函数在图像上运行 Harris 角点检测器。类似于 cornerMinEigenVal 和 cornerEigenValsAndVecs,对于每个像素 (x,y),它在一个 blockSize×blockSize 的邻域内计算一个 2×2 的梯度协方差矩阵 M(x,y)。然后,它计算以下特征值:
dst ( x , y ) = d e t M ( x , y ) − k ⋅ ( t r M ( x , y ) ) 2 \texttt{dst} (x,y) = \mathrm{det} M^{(x,y)} - k \cdot \left ( \mathrm{tr} M^{(x,y)} \right )^2 dst(x,y)=detM(x,y)−k⋅(trM(x,y))2

图像中的角点可以作为该响应图的局部最大值被找到。

cv::cornerHarris 是 OpenCV 库中的一个函数,用于检测图像中的角点。该函数基于 Harris 角点检测算法,该算法通过对图像中的每个像素计算一个响应函数来确定角点的位置。响应函数的值越大,表示该像素越有可能是角点。

函数原型

cpp 复制代码
void cv::cornerHarris	
(
	InputArray 	src,
	OutputArray 	dst,
	int 	blockSize,
	int 	ksize,
	double 	k,
	int 	borderType = BORDER_DEFAULT 
)		

参数

  • 参数src 输入单通道 8 位或浮点图像。
  • 参数dst 用于存储 Harris 检测器响应的图像。它具有类型 CV_32FC1 并且大小与 src 相同。
  • 参数blockSize 邻域大小(参见 cornerEigenValsAndVecs 的详细信息)。
  • 参数ksize Sobel 操作符的孔径参数。
  • 参数k Harris 检测器的自由参数。参见上述公式。
  • 参数borderType 像素外推方法。参见 BorderTypes。不支持 BORDER_WRAP。

代码示例

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>

int main()
{
    // 加载图像
    cv::Mat img = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/hawk.jpg", cv::IMREAD_GRAYSCALE );
    if ( img.empty() )
    {
        std::cout << "Error opening image" << std::endl;
        return -1;
    }

    // 计算 Harris 角点响应
    cv::Mat harrisResponse;
    int blockSize = 2;     // 邻域大小
    int ksize     = 3;     // Sobel 梯度算子的大小
    double k      = 0.04;  // Harris 角点检测器中的自由参数

    cv::cornerHarris( img, harrisResponse, blockSize, ksize, k );

    // 显示 Harris 角点响应图像
    cv::normalize( harrisResponse, harrisResponse, 0, 255, cv::NORM_MINMAX, CV_8U );
    cv::namedWindow( "Harris Response", cv::WINDOW_NORMAL );
    cv::imshow( "Harris Response", harrisResponse );

    // 可选:标记最强的角点
    double maxVal;
    cv::minMaxLoc( harrisResponse, nullptr, &maxVal );

    // 设置阈值
    double threshold = maxVal * 0.5;

    // 创建一个新的图像来标记角点
    cv::Mat markedImg = img.clone();

    // 标记角点
    std::vector< cv::Point > corners;
    cv::Mat_< uchar > responseMat = harrisResponse;
    for ( int y = 0; y < responseMat.rows; ++y )
    {
        for ( int x = 0; x < responseMat.cols; ++x )
        {
            if ( responseMat( y, x ) > threshold )
            {
                corners.push_back( cv::Point( x, y ) );
            }
        }
    }

    // 在图像中标记角点
    for ( const auto& corner : corners )
    {
        cv::circle( markedImg, corner, 2, cv::Scalar( 0, 0, 255 ), 2 );  // 画红色圆圈
    }

    // 显示标记角点的图像
    cv::namedWindow( "Marked Corners", cv::WINDOW_NORMAL );
    cv::imshow( "Marked Corners", markedImg );

    cv::waitKey( 0 );

    return 0;
}

运行结果

原始图:

Harris Response:

Marked Corners:

相关推荐
GIOTTO情37 分钟前
媒介宣发的技术革命:Infoseek如何用AI重构企业传播全链路
大数据·人工智能·重构
阿里云大数据AI技术1 小时前
云栖实录 | 从多模态数据到 Physical AI,PAI 助力客户快速启动 Physical AI 实践
人工智能
小关会打代码1 小时前
计算机视觉进阶教学之颜色识别
人工智能·计算机视觉
IT小哥哥呀1 小时前
基于深度学习的数字图像分类实验与分析
人工智能·深度学习·分类
机器之心1 小时前
VAE时代终结?谢赛宁团队「RAE」登场,表征自编码器或成DiT训练新基石
人工智能·openai
机器之心1 小时前
Sutton判定「LLM是死胡同」后,新访谈揭示AI困境
人工智能·openai
大模型真好玩1 小时前
低代码Agent开发框架使用指南(四)—Coze大模型和插件参数配置最佳实践
人工智能·agent·coze
jerryinwuhan1 小时前
基于大语言模型(LLM)的城市时间、空间与情感交织分析:面向智能城市的情感动态预测与空间优化
人工智能·语言模型·自然语言处理
落雪财神意2 小时前
股指10月想法
大数据·人工智能·金融·区块链·期股
中杯可乐多加冰2 小时前
无代码开发实践|基于业务流能力快速开发市场监管系统,实现投诉处理快速响应
人工智能·低代码