OpenCV特征检测(4)检测图像中的角点函数cornerHarris()的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

Harris 角点检测器。

该函数在图像上运行 Harris 角点检测器。类似于 cornerMinEigenVal 和 cornerEigenValsAndVecs,对于每个像素 (x,y),它在一个 blockSize×blockSize 的邻域内计算一个 2×2 的梯度协方差矩阵 M(x,y)。然后,它计算以下特征值:
dst ( x , y ) = d e t M ( x , y ) − k ⋅ ( t r M ( x , y ) ) 2 \texttt{dst} (x,y) = \mathrm{det} M^{(x,y)} - k \cdot \left ( \mathrm{tr} M^{(x,y)} \right )^2 dst(x,y)=detM(x,y)−k⋅(trM(x,y))2

图像中的角点可以作为该响应图的局部最大值被找到。

cv::cornerHarris 是 OpenCV 库中的一个函数,用于检测图像中的角点。该函数基于 Harris 角点检测算法,该算法通过对图像中的每个像素计算一个响应函数来确定角点的位置。响应函数的值越大,表示该像素越有可能是角点。

函数原型

cpp 复制代码
void cv::cornerHarris	
(
	InputArray 	src,
	OutputArray 	dst,
	int 	blockSize,
	int 	ksize,
	double 	k,
	int 	borderType = BORDER_DEFAULT 
)		

参数

  • 参数src 输入单通道 8 位或浮点图像。
  • 参数dst 用于存储 Harris 检测器响应的图像。它具有类型 CV_32FC1 并且大小与 src 相同。
  • 参数blockSize 邻域大小(参见 cornerEigenValsAndVecs 的详细信息)。
  • 参数ksize Sobel 操作符的孔径参数。
  • 参数k Harris 检测器的自由参数。参见上述公式。
  • 参数borderType 像素外推方法。参见 BorderTypes。不支持 BORDER_WRAP。

代码示例

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>

int main()
{
    // 加载图像
    cv::Mat img = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/hawk.jpg", cv::IMREAD_GRAYSCALE );
    if ( img.empty() )
    {
        std::cout << "Error opening image" << std::endl;
        return -1;
    }

    // 计算 Harris 角点响应
    cv::Mat harrisResponse;
    int blockSize = 2;     // 邻域大小
    int ksize     = 3;     // Sobel 梯度算子的大小
    double k      = 0.04;  // Harris 角点检测器中的自由参数

    cv::cornerHarris( img, harrisResponse, blockSize, ksize, k );

    // 显示 Harris 角点响应图像
    cv::normalize( harrisResponse, harrisResponse, 0, 255, cv::NORM_MINMAX, CV_8U );
    cv::namedWindow( "Harris Response", cv::WINDOW_NORMAL );
    cv::imshow( "Harris Response", harrisResponse );

    // 可选:标记最强的角点
    double maxVal;
    cv::minMaxLoc( harrisResponse, nullptr, &maxVal );

    // 设置阈值
    double threshold = maxVal * 0.5;

    // 创建一个新的图像来标记角点
    cv::Mat markedImg = img.clone();

    // 标记角点
    std::vector< cv::Point > corners;
    cv::Mat_< uchar > responseMat = harrisResponse;
    for ( int y = 0; y < responseMat.rows; ++y )
    {
        for ( int x = 0; x < responseMat.cols; ++x )
        {
            if ( responseMat( y, x ) > threshold )
            {
                corners.push_back( cv::Point( x, y ) );
            }
        }
    }

    // 在图像中标记角点
    for ( const auto& corner : corners )
    {
        cv::circle( markedImg, corner, 2, cv::Scalar( 0, 0, 255 ), 2 );  // 画红色圆圈
    }

    // 显示标记角点的图像
    cv::namedWindow( "Marked Corners", cv::WINDOW_NORMAL );
    cv::imshow( "Marked Corners", markedImg );

    cv::waitKey( 0 );

    return 0;
}

运行结果

原始图:

Harris Response:

Marked Corners:

相关推荐
m0_7513363913 分钟前
突破性进展:超短等离子体脉冲实现单电子量子干涉,为飞行量子比特奠定基础
人工智能·深度学习·量子计算·材料科学·光子器件·光子学·无线电电子
美狐美颜sdk3 小时前
跨平台直播美颜SDK集成实录:Android/iOS如何适配贴纸功能
android·人工智能·ios·架构·音视频·美颜sdk·第三方美颜sdk
DeepSeek-大模型系统教程4 小时前
推荐 7 个本周 yyds 的 GitHub 项目。
人工智能·ai·语言模型·大模型·github·ai大模型·大模型学习
郭庆汝4 小时前
pytorch、torchvision与python版本对应关系
人工智能·pytorch·python
小雷FansUnion6 小时前
深入理解MCP架构:智能服务编排、上下文管理与动态路由实战
人工智能·架构·大模型·mcp
资讯分享周6 小时前
扣子空间PPT生产力升级:AI智能生成与多模态创作新时代
人工智能·powerpoint
叶子爱分享7 小时前
计算机视觉与图像处理的关系
图像处理·人工智能·计算机视觉
鱼摆摆拜拜7 小时前
第 3 章:神经网络如何学习
人工智能·神经网络·学习
一只鹿鹿鹿7 小时前
信息化项目验收,软件工程评审和检查表单
大数据·人工智能·后端·智慧城市·软件工程
张较瘦_7 小时前
[论文阅读] 人工智能 | 深度学习系统崩溃恢复新方案:DaiFu框架的原位修复技术
论文阅读·人工智能·深度学习