使用 Prometheus 的 Metric 组件监控 GoFrame 应用

Prometheus 是一个功能强大且使用广泛的监控系统和时序数据库。它以 HTTP 的方式从远程机器收集数据,并支持灵活的查询语言 PromQL 来分析采集到的数据。GoFrame 框架提供了 Metric 组件,可以方便地将应用运行数据暴露给 Prometheus 采集。下面我们看看如何在 GoFrame 项目中集成 Metric。

安装 Metric 组件

shell 复制代码
go get github.com/gogf/gf/contrib/metrics/prometheus/v2

配置 Prometheus 地址

在配置文件(config.yaml)中添加:

yaml 复制代码
metrics:
  prometheus:
    Address: ":8080"
    Route: "/metrics"

其中 Address 是暴露指标的端口,Route 是 URL 路径。

初始化 Metric

go 复制代码
import "github.com/gogf/gf/contrib/metrics/prometheus/v2"

func init() {
    prometheus.Init()
}

添加指标收集

在需要收集指标的代码位置添加指标:

go 复制代码
// 统计请求数
prometheus.Counter.Inc("app_request_total", map[string]string{
  "path": r.URL.Path, 
  "code": r.Response.Status,
})
  
// 记录请求延迟
prometheus.Histogram.Observe("app_request_duration", float64(r.LeaveTime-r.EnterTime)/1000, map[string]string{
  "path": r.URL.Path,
})

app_request_totalapp_request_duration 是自定义的指标名称,可以根据实际情况修改。

运行应用,Prometheus 开始采集

启动 GoFrame 应用后,Prometheus 就可以通过配置的地址(http://localhost:8080/metrics)采集到应用运行指标了。

可视化查询分析

在 Prometheus 的 UI 或者 Grafana 等可视化面板中,使用 PromQL 就可以方便地查询和分析采集到的指标数据了,比如:

stylus 复制代码
app_request_total  // 请求总数
rate(app_request_total[5m])  // 5分钟内平均请求数
app_request_duration  // 请求延迟
histogram_quantile(0.95, rate(app_request_duration[5m])) // 5分钟内95%的请求延迟

使用 Metric 组件

Metric 组件提供了一些常用的指标类型,如 Counter、Gauge、Histogram、Summary 等,可以直接调用相应的方法来自定义指标。例如:

go 复制代码
// Counter
prometheus.Counter.Inc("app_task_count", map[string]string{"type": "download"})

// Gauge
prometheus.Gauge.Set("app_online_users", 100)

// Histogram
prometheus.Histogram.Observe("app_task_latency", 10.5, map[string]string{"type": "upload"}) 

// Summary
prometheus.Summary.Observe("app_payload_size", 1024)

使用 Prometheus 客户端库

除了 Metric 组件封装的方法,你还可以直接使用 Prometheus 的 Go 客户端库来自定义指标。首先引入依赖:

go 复制代码
import "github.com/prometheus/client_golang/prometheus"

然后可以使用 Prometheus 客户端库提供的方法来创建和注册指标:

go 复制代码
// 创建一个 Gauge 指标
cpuUsage := prometheus.NewGauge(prometheus.GaugeOpts{
    Name: "app_cpu_usage",
    Help: "Current cpu usage.",
})
// 将指标注册到默认的注册表中
prometheus.MustRegister(cpuUsage)

// 更新指标的值
cpuUsage.Set(85.0)

定义结构体并实现 Prometheus 的 Collector 接口

对于一些更复杂的指标,可以定义结构体,并实现 Prometheus 的 Collector 接口。这样可以更灵活地控制指标的收集和展示。

go 复制代码
import "github.com/prometheus/client_golang/prometheus"

// 定义一个结构体
type UserCollector struct {
    UserTotal prometheus.Gauge
    UserOnline prometheus.Gauge 
}

// 实现 Describe 方法
func (c *UserCollector) Describe(ch chan<- *prometheus.Desc) {
    ch <- c.UserTotal.Desc()
    ch <- c.UserOnline.Desc()
}

// 实现 Collect 方法  
func (c *UserCollector) Collect(ch chan<- prometheus.Metric) {
    c.UserTotal.Set(getUserTotalFromDB())
    c.UserOnline.Set(getUserOnlineFromRedis())
    
    ch <- c.UserTotal
    ch <- c.UserOnline
}

func init() {
    // 注册自定义的 Collector
    prometheus.MustRegister(&UserCollector{
        UserTotal: prometheus.NewGauge(prometheus.GaugeOpts{
            Name: "app_user_total",
            Help: "Total number of registered users.",
        }),
        UserOnline: prometheus.NewGauge(prometheus.GaugeOpts{
            Name: "app_user_online", 
            Help: "Number of online users.",
        }),
    })
}

总结

通过以上简单的几个步骤,我们就可以利用 GoFrame 的 Metric 组件将应用运行指标暴露给 Prometheus,实现应用性能的监控和分析。Metric 组件使用非常灵活方便,你可以收集任意你需要了解的指标,如接口调用次数、耗时、错误数、资源消耗等,以掌握应用的实时运行状态。结合 Prometheus 强大的存储、查询、报警功能,以及丰富的可视化插件,对应用进行多维度监控和优化,提高服务可用性。

相关推荐
沈韶珺1 小时前
Visual Basic语言的云计算
开发语言·后端·golang
沈韶珺1 小时前
Perl语言的函数实现
开发语言·后端·golang
美味小鱼2 小时前
Rust 所有权特性详解
开发语言·后端·rust
我的K84092 小时前
Spring Boot基本项目结构
java·spring boot·后端
优人ovo3 小时前
详解Kafka并行计算架构
分布式·架构·kafka
慕璃嫣3 小时前
Haskell语言的多线程编程
开发语言·后端·golang
晴空๓3 小时前
Spring Boot项目如何使用MyBatis实现分页查询
spring boot·后端·mybatis
Hello.Reader7 小时前
深入浅出 Rust 的强大 match 表达式
开发语言·后端·rust
customer0810 小时前
【开源免费】基于SpringBoot+Vue.JS体育馆管理系统(JAVA毕业设计)
java·vue.js·spring boot·后端·开源