SparkSQL和Spark常用语句

Spark SQL 常用语句

读取数据

scala

val df = spark.read.option("header", "true").csv("path/to/csvfile.csv")

val df = spark.read.parquet("path/to/parquetfile.parquet")

val df = spark.read.json("path/to/jsonfile.json")

展示数据

scala

df.show()

df.show(5) // 展示前5条记录

打印模式(Schema)

scala

df.printSchema()

选择列

scala

df.select("column1", "column2").show()

df.select("column1", "column2" + 1).show()

过滤数据

scala

df.filter($"column1" > 100).show()

df.filter("column1 > 100").show()

分组和聚合

scala

df.groupBy("column1").avg("column2").show()

df.groupBy("column1").agg(Max("column2"), Sum("column3")).show()

排序

scala

df.orderBy($"column1".desc).show()

df.orderBy("column1", "column2".asc).show()

重命名列

scala

df.withColumnRenamed("oldName", "newName").show()

添加新列

scala

df.withColumn("newColumn", "column1" + "column2").show()

删除列

scala

df.drop("column1").show()

SQL 查询

scala

df.createOrReplaceTempView("table_name")

spark.sql("SELECT * FROM table_name WHERE column1 > 100").show()

连接(Join)

scala

val df1 = ...

val df2 = ...

df1.join(df2, df1("id") === df2("id")).show()

df1.join(df2, Seq("id")).show() // 适用于相同列名的简单连接

写入数据

scala

df.write.option("header", "true").csv("path/to/output.csv")

df.write.parquet("path/to/output.parquet")

Spark 常用语句(Spark Core)

初始化 SparkConf 和 SparkContext

scala

val conf = new SparkConf().setAppName("AppName").setMaster("local[*]")

val sc = new SparkContext(conf)

读取数据

scala

val data = sc.textFile("path/to/textfile.txt")

展示数据

scala

data.take(10).foreach(println)

映射(Map)

scala

val mappedData = data.map(line => line.split(",")(0))

过滤(Filter)

scala

val filteredData = data.filter(line => line.contains("keyword"))

flatMap

scala

val flatMappedData = data.flatMap(line => line.split(" "))

行动操作(例如:collect, count, reduce)

scala

data.collect()

data.count()

val reducedData = data.reduce(_ + _)

键值对操作

scala

val pairs = data.map(line => (line.split(",")(0), line.split(",")(1)))

val groupedByKey = pairs.groupByKey()

val reducedByKey = pairs.reduceByKey(_ + _)

排序

scala

val sortedData = data.sortBy(line => line.length)

联合(Union)

scala

val rdd1 = ...

val rdd2 = ...

val unionedRDD = rdd1.union(rdd2)

缓存(Cache)

scala

data.cache()

保存数据

scala

data.saveAsTextFile("path/to/output")

相关推荐
老胖闲聊6 小时前
Python Copilot【代码辅助工具】 简介
开发语言·python·copilot
Blossom.1186 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
曹勖之6 小时前
基于ROS2,撰写python脚本,根据给定的舵-桨动力学模型实现动力学更新
开发语言·python·机器人·ros2
lyaihao7 小时前
使用python实现奔跑的线条效果
python·绘图
ai大师8 小时前
(附代码及图示)Multi-Query 多查询策略详解
python·langchain·中转api·apikey·中转apikey·免费apikey·claude4
小小爬虾8 小时前
关于datetime获取时间的问题
python
Lansonli8 小时前
大数据Spark(六十一):Spark基于Standalone提交任务流程
大数据·分布式·spark
蓝婷儿9 小时前
6个月Python学习计划 Day 16 - 面向对象编程(OOP)基础
开发语言·python·学习
chao_78910 小时前
链表题解——两两交换链表中的节点【LeetCode】
数据结构·python·leetcode·链表
大霞上仙10 小时前
nonlocal 与global关键字
开发语言·python