SparkSQL和Spark常用语句

Spark SQL 常用语句

读取数据

scala

val df = spark.read.option("header", "true").csv("path/to/csvfile.csv")

val df = spark.read.parquet("path/to/parquetfile.parquet")

val df = spark.read.json("path/to/jsonfile.json")

展示数据

scala

df.show()

df.show(5) // 展示前5条记录

打印模式(Schema)

scala

df.printSchema()

选择列

scala

df.select("column1", "column2").show()

df.select("column1", "column2" + 1).show()

过滤数据

scala

df.filter($"column1" > 100).show()

df.filter("column1 > 100").show()

分组和聚合

scala

df.groupBy("column1").avg("column2").show()

df.groupBy("column1").agg(Max("column2"), Sum("column3")).show()

排序

scala

df.orderBy($"column1".desc).show()

df.orderBy("column1", "column2".asc).show()

重命名列

scala

df.withColumnRenamed("oldName", "newName").show()

添加新列

scala

df.withColumn("newColumn", "column1" + "column2").show()

删除列

scala

df.drop("column1").show()

SQL 查询

scala

df.createOrReplaceTempView("table_name")

spark.sql("SELECT * FROM table_name WHERE column1 > 100").show()

连接(Join)

scala

val df1 = ...

val df2 = ...

df1.join(df2, df1("id") === df2("id")).show()

df1.join(df2, Seq("id")).show() // 适用于相同列名的简单连接

写入数据

scala

df.write.option("header", "true").csv("path/to/output.csv")

df.write.parquet("path/to/output.parquet")

Spark 常用语句(Spark Core)

初始化 SparkConf 和 SparkContext

scala

val conf = new SparkConf().setAppName("AppName").setMaster("local[*]")

val sc = new SparkContext(conf)

读取数据

scala

val data = sc.textFile("path/to/textfile.txt")

展示数据

scala

data.take(10).foreach(println)

映射(Map)

scala

val mappedData = data.map(line => line.split(",")(0))

过滤(Filter)

scala

val filteredData = data.filter(line => line.contains("keyword"))

flatMap

scala

val flatMappedData = data.flatMap(line => line.split(" "))

行动操作(例如:collect, count, reduce)

scala

data.collect()

data.count()

val reducedData = data.reduce(_ + _)

键值对操作

scala

val pairs = data.map(line => (line.split(",")(0), line.split(",")(1)))

val groupedByKey = pairs.groupByKey()

val reducedByKey = pairs.reduceByKey(_ + _)

排序

scala

val sortedData = data.sortBy(line => line.length)

联合(Union)

scala

val rdd1 = ...

val rdd2 = ...

val unionedRDD = rdd1.union(rdd2)

缓存(Cache)

scala

data.cache()

保存数据

scala

data.saveAsTextFile("path/to/output")

相关推荐
databook18 小时前
Manim实现闪光轨迹特效
后端·python·动效
武子康18 小时前
大数据-98 Spark 从 DStream 到 Structured Streaming:Spark 实时计算的演进
大数据·后端·spark
Juchecar19 小时前
解惑:NumPy 中 ndarray.ndim 到底是什么?
python
用户83562907805119 小时前
Python 删除 Excel 工作表中的空白行列
后端·python
Json_19 小时前
使用python-fastApi框架开发一个学校宿舍管理系统-前后端分离项目
后端·python·fastapi
数据智能老司机1 天前
精通 Python 设计模式——分布式系统模式
python·设计模式·架构
武子康1 天前
大数据-100 Spark DStream 转换操作全面总结:map、reduceByKey 到 transform 的实战案例
大数据·后端·spark
数据智能老司机1 天前
精通 Python 设计模式——并发与异步模式
python·设计模式·编程语言
数据智能老司机1 天前
精通 Python 设计模式——测试模式
python·设计模式·架构
数据智能老司机1 天前
精通 Python 设计模式——性能模式
python·设计模式·架构