SparkSQL和Spark常用语句

Spark SQL 常用语句

读取数据

scala

val df = spark.read.option("header", "true").csv("path/to/csvfile.csv")

val df = spark.read.parquet("path/to/parquetfile.parquet")

val df = spark.read.json("path/to/jsonfile.json")

展示数据

scala

df.show()

df.show(5) // 展示前5条记录

打印模式(Schema)

scala

df.printSchema()

选择列

scala

df.select("column1", "column2").show()

df.select("column1", "column2" + 1).show()

过滤数据

scala

df.filter($"column1" > 100).show()

df.filter("column1 > 100").show()

分组和聚合

scala

df.groupBy("column1").avg("column2").show()

df.groupBy("column1").agg(Max("column2"), Sum("column3")).show()

排序

scala

df.orderBy($"column1".desc).show()

df.orderBy("column1", "column2".asc).show()

重命名列

scala

df.withColumnRenamed("oldName", "newName").show()

添加新列

scala

df.withColumn("newColumn", "column1" + "column2").show()

删除列

scala

df.drop("column1").show()

SQL 查询

scala

df.createOrReplaceTempView("table_name")

spark.sql("SELECT * FROM table_name WHERE column1 > 100").show()

连接(Join)

scala

val df1 = ...

val df2 = ...

df1.join(df2, df1("id") === df2("id")).show()

df1.join(df2, Seq("id")).show() // 适用于相同列名的简单连接

写入数据

scala

df.write.option("header", "true").csv("path/to/output.csv")

df.write.parquet("path/to/output.parquet")

Spark 常用语句(Spark Core)

初始化 SparkConf 和 SparkContext

scala

val conf = new SparkConf().setAppName("AppName").setMaster("local[*]")

val sc = new SparkContext(conf)

读取数据

scala

val data = sc.textFile("path/to/textfile.txt")

展示数据

scala

data.take(10).foreach(println)

映射(Map)

scala

val mappedData = data.map(line => line.split(",")(0))

过滤(Filter)

scala

val filteredData = data.filter(line => line.contains("keyword"))

flatMap

scala

val flatMappedData = data.flatMap(line => line.split(" "))

行动操作(例如:collect, count, reduce)

scala

data.collect()

data.count()

val reducedData = data.reduce(_ + _)

键值对操作

scala

val pairs = data.map(line => (line.split(",")(0), line.split(",")(1)))

val groupedByKey = pairs.groupByKey()

val reducedByKey = pairs.reduceByKey(_ + _)

排序

scala

val sortedData = data.sortBy(line => line.length)

联合(Union)

scala

val rdd1 = ...

val rdd2 = ...

val unionedRDD = rdd1.union(rdd2)

缓存(Cache)

scala

data.cache()

保存数据

scala

data.saveAsTextFile("path/to/output")

相关推荐
youzj09256 分钟前
docker网站配置
python
snowfoootball23 分钟前
python函数及面向过程高级特性
开发语言·python
DP+GISer25 分钟前
基于站点数据进行遥感机器学习参数反演-以XGBOOST反演LST为例(附带数据与代码)试读
人工智能·python·机器学习·遥感与机器学习
工业互联网专业1 小时前
基于协同过滤算法的小说推荐系统_django+spider
python·django·毕业设计·源码·课程设计·spider·协同过滤算法
星星的月亮叫太阳2 小时前
large-scale-DRL-exploration 代码阅读 总结
python·算法
Q_Q19632884752 小时前
python+django/flask基于Echarts+Python的图书零售监测系统设计与实现(带大屏)
spring boot·python·django·flask·node.js·php
深度学习lover2 小时前
<数据集>yolo航拍交通目标识别数据集<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·航拍交通目标识别
程序猿20232 小时前
Python每日一练---第二天:合并两个有序数组
开发语言·python
权泽谦2 小时前
用 Flask + OpenAI API 打造一个智能聊天机器人(附完整源码与部署教程)
python·机器人·flask
njxiejing3 小时前
Numpy一维、二维、三维数组切片实例
开发语言·python·numpy