SparkSQL和Spark常用语句

Spark SQL 常用语句

读取数据

scala

val df = spark.read.option("header", "true").csv("path/to/csvfile.csv")

val df = spark.read.parquet("path/to/parquetfile.parquet")

val df = spark.read.json("path/to/jsonfile.json")

展示数据

scala

df.show()

df.show(5) // 展示前5条记录

打印模式(Schema)

scala

df.printSchema()

选择列

scala

df.select("column1", "column2").show()

df.select("column1", "column2" + 1).show()

过滤数据

scala

df.filter($"column1" > 100).show()

df.filter("column1 > 100").show()

分组和聚合

scala

df.groupBy("column1").avg("column2").show()

df.groupBy("column1").agg(Max("column2"), Sum("column3")).show()

排序

scala

df.orderBy($"column1".desc).show()

df.orderBy("column1", "column2".asc).show()

重命名列

scala

df.withColumnRenamed("oldName", "newName").show()

添加新列

scala

df.withColumn("newColumn", "column1" + "column2").show()

删除列

scala

df.drop("column1").show()

SQL 查询

scala

df.createOrReplaceTempView("table_name")

spark.sql("SELECT * FROM table_name WHERE column1 > 100").show()

连接(Join)

scala

val df1 = ...

val df2 = ...

df1.join(df2, df1("id") === df2("id")).show()

df1.join(df2, Seq("id")).show() // 适用于相同列名的简单连接

写入数据

scala

df.write.option("header", "true").csv("path/to/output.csv")

df.write.parquet("path/to/output.parquet")

Spark 常用语句(Spark Core)

初始化 SparkConf 和 SparkContext

scala

val conf = new SparkConf().setAppName("AppName").setMaster("local[*]")

val sc = new SparkContext(conf)

读取数据

scala

val data = sc.textFile("path/to/textfile.txt")

展示数据

scala

data.take(10).foreach(println)

映射(Map)

scala

val mappedData = data.map(line => line.split(",")(0))

过滤(Filter)

scala

val filteredData = data.filter(line => line.contains("keyword"))

flatMap

scala

val flatMappedData = data.flatMap(line => line.split(" "))

行动操作(例如:collect, count, reduce)

scala

data.collect()

data.count()

val reducedData = data.reduce(_ + _)

键值对操作

scala

val pairs = data.map(line => (line.split(",")(0), line.split(",")(1)))

val groupedByKey = pairs.groupByKey()

val reducedByKey = pairs.reduceByKey(_ + _)

排序

scala

val sortedData = data.sortBy(line => line.length)

联合(Union)

scala

val rdd1 = ...

val rdd2 = ...

val unionedRDD = rdd1.union(rdd2)

缓存(Cache)

scala

data.cache()

保存数据

scala

data.saveAsTextFile("path/to/output")

相关推荐
清水白石0081 小时前
隔离的艺术:用 `unittest.mock` 驯服外部依赖,让测试真正可控
python
码农小韩1 小时前
AIAgent应用开发——大模型理论基础与应用(五)
人工智能·python·提示词工程·aiagent
百锦再2 小时前
Java中的char、String、StringBuilder与StringBuffer 深度详解
java·开发语言·python·struts·kafka·tomcat·maven
Jonathan Star2 小时前
Ant Design (antd) Form 组件中必填项的星号(*)从标签左侧移到右侧
人工智能·python·tensorflow
努力努力再努力wz3 小时前
【Linux网络系列】:TCP 的秩序与策略:揭秘传输层如何从不可靠的网络中构建绝对可靠的通信信道
java·linux·开发语言·数据结构·c++·python·算法
deep_drink3 小时前
【论文精读(三)】PointMLP:大道至简,无需卷积与注意力的纯MLP点云网络 (ICLR 2022)
人工智能·pytorch·python·深度学习·3d·point cloud
njsgcs3 小时前
langchain+vlm示例
windows·python·langchain
勇气要爆发4 小时前
LangGraph 实战:10分钟打造带“人工审批”的智能体流水线 (Python + LangChain)
开发语言·python·langchain
jz_ddk4 小时前
[实战] 从冲击响应函数计算 FIR 系数
python·fpga开发·信号处理·fir·根升余弦·信号成形
醒醒该学习了!4 小时前
如何将json文件转成csv文件(python代码实操)
服务器·python·json