[大语言模型] LINFUSION:1个GPU,1分钟,16K图像

  1. 文章

2409.02097 (arxiv.org)https://arxiv.org/pdf/2409.02097

LINFUSION: 1 GPU, 1 MINUTE, 16K IMAGE

摘要

本文介绍了一种新型的扩散模型LINFUSION,它能够在保持高分辨率图像生成性能的同时显著降低时间和内存复杂度。该模型采用了基于Transformer的UNet进行去噪,并且通过引入线性注意力机制替代了传统的自注意力操作,以解决高分辨率视觉内容生成中的挑战。研究者们从最近引入的具有线性复杂度的模型中获得灵感,提出了一种新的线性注意力范式,该范式可作为多种流行的线性令牌混合器的低秩近似。通过从预训练的StableDiffusion (SD)模型中初始化并进行知识蒸馏,LINFUSION在适度训练后即可达到或超过原始SD的性能,同时显著减少时间和内存复杂度。实验表明,LINFUSION能够生成高达16K分辨率的高分辨率图像,并且与预训练的SD组件(如ControlNet和IP-Adapter)高度兼容。

创新点

  1. 提出了一种新的线性注意力机制,作为传统自注意力方法的替代,以解决高分辨率图像生成中的时间和内存复杂度问题。
  2. 引入了注意力归一化和非因果推理两个关键特性,以增强高分辨率视觉生成性能。
  3. 通过知识蒸馏的方式,从预训练的StableDiffusion模型中初始化并优化LINFUSION,减少了训练成本并提高了与现有模型的兼容性。

算法模型

LINFUSION模型基于Stable Diffusion (SD),通过以下关键技术构建:

  • 线性注意力机制 :替代SD中的自注意力层,以线性复杂度处理空间令牌。

  • 注意力归一化 :确保不同输入规模下的总影响保持一致。

  • 非因果推理 :允许模型同时访问所有噪声空间令牌并基于整个输入生成去噪令牌。

  • 知识蒸馏:从预训练的SD模型中转移知识,以优化LINFUSION模型。

实验效果

  • 生成速度和内存消耗:在8步去噪和单GPU情况下,与原始SD-v1.5相比,LINFUSION在不同分辨率下的生成速度更快,内存消耗更低。
  • 跨分辨率生成性能:在SD-v1.5、SD-v2.1和SD-XL上的实验表明,LINFUSION在零样本跨分辨率生成性能上令人满意,能够生成高达16K分辨率的图像。
  • 与预训练组件的兼容性:LINFUSION与SD的现有组件(如ControlNet和IP-Adapter)高度兼容,无需额外训练成本。
相关推荐
h_k100867 分钟前
如何使用 DeepSeek 帮助自己的工作?的技术文章大纲
人工智能
minhuan17 分钟前
构建AI智能体:二十八、大语言模型BERT:原理、应用结合日常场景实践全面解析
人工智能·语言模型·自然语言处理·bert·ai大模型·rag
IT_陈寒1 小时前
SpringBoot高并发优化:这5个被忽视的配置让你的QPS提升300%
前端·人工智能·后端
索迪迈科技1 小时前
机器学习投票分类
人工智能·机器学习·分类
君名余曰正则1 小时前
机器学习08——集成学习(Boosting、Bagging、结合策略)
人工智能·机器学习·集成学习
小鑫同学1 小时前
M4 MacBook Pro + Qwen 模型:企业问答机器人原型微调实战方案
人工智能·llm
搬砖的小码农_Sky1 小时前
机器人商业化落地需要突破的关键性技术
人工智能·ai·机器人
xwz小王子1 小时前
Science Robotics 封面论文:RoboBallet利用图神经网络和强化学习规划多机器人协作
人工智能·神经网络·机器人
Deepoch1 小时前
当按摩机器人“活了”:Deepoc具身智能如何重新定义人机交互体验
人工智能·科技·机器人·人机交互·具身智能
37手游后端团队1 小时前
Cursor实战:用Cursor实现积分商城系统
人工智能·后端