文章目录
- 解决tiktoken库调用get_encoding时SSL超时
-
- [1. 获取词表文件url](#1. 获取词表文件url)
- [2. 手动下载词表文件并保存到本地](#2. 手动下载词表文件并保存到本地)
- [3. 复制并重命名文件](#3. 复制并重命名文件)
- [4. 环境变量中设置tiktoken cache](#4. 环境变量中设置tiktoken cache)
- [5. 使用tiktoken库](#5. 使用tiktoken库)
- 参考资料
解决tiktoken库调用get_encoding时SSL超时
最近在看Build a Large Language Model (From Scratch) 这本书。在该书的第二章中,作者尝试使用tiktoken
库构建一个tokenizer。然而,当我执行以下代码时,程序报错。
python
import tiktoken
tokenizer = tiktoken.get_encoding("gpt2")
shell
ConnectTimeout: HTTPSConnectionPool(host='openaipublic.blob.core.windows.net', port=443): Max retries exceeded with url: /encodings/gpt2.tiktoken (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x7fd41b819630>, 'Connection to openaipublic.blob.core.windows.net timed out. (connect timeout=None)'))
这个错误的根本原因是构建tokenizer时tiktoken
库尝试下载词表文件遇到网络问题而失败。一个可行的解决方案时先手动下载文件到本地,然后让tiktoken
直接从本地文件读取数据并构建tokenizer。
1. 获取词表文件url
First, let's grab the tokenizer blob URL from the source on your remote machine. If we trace the
get_encoding
function, we find it calls a function fromtiktoken_ext.openai_public
which has the blob URIs for each encoder. Identify the correct function, then print the source
首先需要查看一下构建我们所需的tokenizer需要哪些词表文件。我这里需要使用构建名为gpt2
的tokenizer。从下面的输出信息可以看到,还有 o200k_base
, p50k_base
等可供选择。结果显示,构建gpt2
tokenizer需要下载vocab.bpe
和encoder.json
两个文件。
python
import tiktoken_ext.openai_public
import inspect
print(dir(tiktoken_ext.openai_public))
# The encoder we want is cl100k_base, we see this as a possible function
print(inspect.getsource(tiktoken_ext.openai_public.gpt2))
# The URL should be in the 'load_tiktoken_bpe function call'
运行结果:
shell
['ENCODING_CONSTRUCTORS', 'ENDOFPROMPT', 'ENDOFTEXT', 'FIM_MIDDLE', 'FIM_PREFIX', 'FIM_SUFFIX', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__spec__', 'cl100k_base', 'data_gym_to_mergeable_bpe_ranks', 'gpt2', 'load_tiktoken_bpe', 'o200k_base', 'p50k_base', 'p50k_edit', 'r50k_base']
def gpt2():
mergeable_ranks = data_gym_to_mergeable_bpe_ranks(
vocab_bpe_file="https://openaipublic.blob.core.windows.net/gpt-2/encodings/main/vocab.bpe",
encoder_json_file="https://openaipublic.blob.core.windows.net/gpt-2/encodings/main/encoder.json",
vocab_bpe_hash="1ce1664773c50f3e0cc8842619a93edc4624525b728b188a9e0be33b7726adc5",
encoder_json_hash="196139668be63f3b5d6574427317ae82f612a97c5d1cdaf36ed2256dbf636783",
)
return {
"name": "gpt2",
"explicit_n_vocab": 50257,
# The pattern in the original GPT-2 release is:
# r"""'s|'t|'re|'ve|'m|'ll|'d| ?[\p{L}]+| ?[\p{N}]+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
# This is equivalent, but executes faster:
"pat_str": r"""'(?:[sdmt]|ll|ve|re)| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""",
"mergeable_ranks": mergeable_ranks,
"special_tokens": {ENDOFTEXT: 50256},
}
2. 手动下载词表文件并保存到本地
根据步骤1获得的url,手动下载词表文件并保存到本地。
3. 复制并重命名文件
新建一个文件夹.tiktoken
,将下载的词表文件复制至该文件夹。重命名各文件,新的文件值可以通过执行以下代码获取。blobpath
是步骤1中获取的该文件对应的url值。
python
import hashlib
blobpath = "your_blob_url_here"
cache_key = hashlib.sha1(blobpath.encode()).hexdigest()
print(cache_key)
比如对于我刚刚下载的encoder.json
文件,结果如下:
python
import hashlib
blobpath = "https://openaipublic.blob.core.windows.net/gpt-2/encodings/main/encoder.json"
cache_key = hashlib.sha1(blobpath.encode()).hexdigest()
print(cache_key)
shell
6c7ea1a7e38e3a7f062df639a5b80947f075ffe6
于是将encoder.json
重命名为6c7ea1a7e38e3a7f062df639a5b80947f075ffe6
(注意,重命名后的文件不带.json后缀)。
4. 环境变量中设置tiktoken cache
执行以下代码,指定tiktoken cache为.titoken
文件夹。注意,每次使用tiktoken库时都要运行下述代码。
python
import os
tiktoken_cache_dir = "path_to_folder_containing_tiktoken_file"
os.environ["TIKTOKEN_CACHE_DIR"] = tiktoken_cache_dir
# validate
assert os.path.exists(os.path.join(tiktoken_cache_dir, cache_key))
5. 使用tiktoken库
现在应该可以正常使用tiktoken库构建tokenizer。
python
encoding = tiktoken.get_encoding("gpt2")
encoding.encode("Hello, world")
shell
[15496, 11, 995]
参考资料
[2] python - how to use tiktoken in offline mode computer - Stack Overflow