【二分算法】模板总结

目录

一、二分查找时间复杂度

二、二分查找模板

[2.1 模板一:标准的二分查找](#2.1 模板一:标准的二分查找)

[2.2 模板二:二分查找左边界](#2.2 模板二:二分查找左边界)

[2.3 模板三:二分查找右边界](#2.3 模板三:二分查找右边界)

三、总结:


一、二分查找时间复杂度

时间复杂度可以表示 O(n)=O(log2​n)或者O(n)=O(logn)

二、二分查找模板

什么时候可能需要用二分查找?

(1)待查找的数组有序或者部分有序

(2)可以发现二段性

(3)题目要求时间复杂度低于 O(n),或者直接要求时间复杂度为 O(log n)

2.1 模板一:标准的二分查找

适用场景:数组元素有序且不重复

java 复制代码
public int search(int[] nums, int target) {
        int left = 0,right = nums.length-1;
        while(left<=right) {
            int mid = left + ((right-left)>>1);//+运算的优先级高
            if(target==nums[mid]) return mid;
            else if(nums[mid]<target) left = mid+1;
            else right = mid-1;
        }
        return -1;
    }

注意点:

(1)为什么 while 循环的条件是 <=,而不是 < ?

当元素只有一个且这个元素正好就是目标值,那么没有=就进入不了循环,得不到正确的结果

(2)计算 mid 时需要防止溢出

left + ((right -left) >> 1) 其实和 (left + right) / 2 是等价的,这样写的目的一个是为了防止 (left + right) 出现溢出,另外用位运算替代除法提升性能


2.2 模板二:二分查找左边界

java 复制代码
public int search(int[] nums, int target) {
        int left =0,right = nums.length-1;
        while(left<right) {//1.
            int mid = left+(right-left)/2;//2.
            if(nums[mid]<target) left = mid+1;//3.
            else right = mid;
        }
        if(nums[left]==target) return left;
        return -1;
    }

注意点:

(1)为什么 while 循环的条件是 <,而不是 <= ?

left等于right的时候就已经得到了最终结果,如果判断了,就会进入死循环,因为right后面一直不动

(2) 求中点的操作

求左边界根标准模板一样,不用+1,直接left+(right-left)/2(总个数为偶数个时取中点的时候取左边那个

(3)为啥nums[mid]==target右边界也要变

要寻找左边界,当nums[mid] == target,这个mid的位置不一定就是最左侧的那个边界,所以还要继续收缩右边界

2.3 模板三:二分查找右边界

java 复制代码
public int search(int[] nums, int target) {
        int left =0,right = nums.length-1;
        while(left<right) {//1.
            int mid = left+(right-left+1)/2;//2.
            if(nums[mid]>target) right = mid-1;//3.
            else left=mid;
        }
        if(nums[right]==target) return right;
        return -1;
    }

注意点:

(1)为什么 while 循环的条件是 <,而不是 <= ?

left等于right的时候就已经得到了最终结果,如果判断了,就会进入死循环,因为right后面一直不动

(2) 求中点的操作

这个和求左边界不一样,需要+1,即left+(right-left+1)/2(总个数为偶数个时取中点的时候取右边那个),因为如果最后剩两个元素的时候,left一直找左边那个元素,那么将会进入死循环

(3)为啥nums[mid]==target左边界也要变

要寻找右边界,当nums[mid] == target,这个mid的位置不一定就是最右侧的那个边界,所以还要继续收缩左边界


三、总结:

(1)左+1,右不变

找左边界时,left = mid+1;找右边界,left = mid

(2)下面出现-1的时候,上面就要+1

mid-1出现,那么上面求mid就需要+1

相关推荐
清梦202035 分钟前
经典问题---跳跃游戏II(贪心算法)
算法·游戏·贪心算法
Dream_Snowar1 小时前
速通Python 第四节——函数
开发语言·python·算法
Altair澳汰尔1 小时前
数据分析和AI丨知识图谱,AI革命中数据集成和模型构建的关键推动者
人工智能·算法·机器学习·数据分析·知识图谱
A懿轩A2 小时前
C/C++ 数据结构与算法【栈和队列】 栈+队列详细解析【日常学习,考研必备】带图+详细代码
c语言·数据结构·c++·学习·考研·算法·栈和队列
Python机器学习AI2 小时前
分类模型的预测概率解读:3D概率分布可视化的直观呈现
算法·机器学习·分类
吕小明么2 小时前
OpenAI o3 “震撼” 发布后回归技术本身的审视与进一步思考
人工智能·深度学习·算法·aigc·agi
1 9 J3 小时前
数据结构 C/C++(实验五:图)
c语言·数据结构·c++·学习·算法
程序员shen1616113 小时前
抖音短视频saas矩阵源码系统开发所需掌握的技术
java·前端·数据库·python·算法
汝即来归3 小时前
选择排序和冒泡排序;MySQL架构
数据结构·算法·排序算法
咒法师无翅鱼4 小时前
【定理证明工具调研】Coq, Isabelle and Lean.
算法