LeetCode_sql_day27(1225.报告系统状态的连续信息)

目录

[描述: 1225.报告系统状态的连续信息](#描述: 1225.报告系统状态的连续信息)

数据准备:

分析:

代码:

总结:


描述: 1225.报告系统状态的连续信息

表:Failed

复制代码
+--------------+---------+
| Column Name  | Type    |
+--------------+---------+
| fail_date    | date    |
+--------------+---------+
该表主键为 fail_date (具有唯一值的列)。
该表包含失败任务的天数.

表: Succeeded

复制代码
+--------------+---------+
| Column Name  | Type    |
+--------------+---------+
| success_date | date    |
+--------------+---------+
该表主键为 success_date (具有唯一值的列)。
该表包含成功任务的天数.

系统 每天 运行一个任务。每个任务都独立于先前的任务。任务的状态可以是失败或是成功。

编写解决方案找出 2019-01-012019-12-31 期间任务连续同状态 period_state 的起止日期(start_dateend_date)。即如果任务失败了,就是失败状态的起止日期,如果任务成功了,就是成功状态的起止日期。

最后结果按照起始日期 start_date 排序

返回结果样例如下所示:

示例 1:

复制代码
输入:
Failed table:
+-------------------+
| fail_date         |
+-------------------+
| 2018-12-28        |
| 2018-12-29        |
| 2019-01-04        |
| 2019-01-05        |
+-------------------+
Succeeded table:
+-------------------+
| success_date      |
+-------------------+
| 2018-12-30        |
| 2018-12-31        |
| 2019-01-01        |
| 2019-01-02        |
| 2019-01-03        |
| 2019-01-06        |
+-------------------+
输出:
+--------------+--------------+--------------+
| period_state | start_date   | end_date     |
+--------------+--------------+--------------+
| succeeded    | 2019-01-01   | 2019-01-03   |
| failed       | 2019-01-04   | 2019-01-05   |
| succeeded    | 2019-01-06   | 2019-01-06   |
+--------------+--------------+--------------+
解释:
结果忽略了 2018 年的记录,因为我们只关心从 2019-01-01 到 2019-12-31 的记录
从 2019-01-01 到 2019-01-03 所有任务成功,系统状态为 "succeeded"。
从 2019-01-04 到 2019-01-05 所有任务失败,系统状态为 "failed"。
从 2019-01-06 到 2019-01-06 所有任务成功,系统状态为 "succeeded"。

数据准备:

sql 复制代码
Create table If Not Exists Failed (fail_date date)
Create table If Not Exists Succeeded (success_date date)
Truncate table Failed
insert into Failed (fail_date) values ('2018-12-28')
insert into Failed (fail_date) values ('2018-12-29')
insert into Failed (fail_date) values ('2019-01-04')
insert into Failed (fail_date) values ('2019-01-05')
Truncate table Succeeded
insert into Succeeded (success_date) values ('2018-12-30')
insert into Succeeded (success_date) values ('2018-12-31')
insert into Succeeded (success_date) values ('2019-01-01')
insert into Succeeded (success_date) values ('2019-01-02')
insert into Succeeded (success_date) values ('2019-01-03')
insert into Succeeded (success_date) values ('2019-01-06')

分析:

① 首先先加一列状态列 同时union all连接 两张表

复制代码
select success_date date, 'succeeded' as state
            from Succeeded
            union all
            select *, 'failed' as failed
            from Failed

②根据日期排序 同时筛选数据

复制代码
with t1 as (
select success_date date, 'succeeded' as state
            from Succeeded
            union all
            select *, 'failed' as failed
            from Failed)
   select date, state
            from t1
            where date between '2019-01-01' and '2019-12-31'
            order by date

③根据状态分组 根据日期排名

复制代码
with t1 as (select success_date date, 'succeeded' as state
            from Succeeded
            union all
            select *, 'failed' as failed
            from Failed)
   , t2 as (
   select date, state
            from t1
            where date between '2019-01-01' and '2019-12-31'
            order by date)
   select *, row_number() over (partition by state order by date) r1
            from t2

④ 构造差值 date 减去r1 求一个辅助日期 如果辅助日期相同 说明是连续的

复制代码
with t1 as (select success_date date, 'succeeded' as state
            from Succeeded
            union all
            select *, 'failed' as failed
            from Failed)
   , t2 as (
   select date, state
            from t1
            where date between '2019-01-01' and '2019-12-31'
            order by date)
   , t3 as (
   select *, row_number() over (partition by state order by date) r1
            from t2)
   select *, date_sub(date, interval r1 day) r2
            from t3
            order by date

⑤ 根据状态state和辅助列r2分组 根据日期排序 求出 每组最小的/第一个日期 和 最大的/最后一个日期

复制代码
select distinct state                                                        period_state,
                first_value(date) over (partition by state,r2 order by date) start_date,
                max(date) over (partition by state,r2 )                      end_date
# last_value(date) over (partition by state,r2 order by date rows between unbounded preceding and unbounded following ) end_date
# 提供两种方法
from t4
order by start_date

代码:

sql 复制代码
with t1 as (select success_date date, 'succeeded' as state
            from Succeeded
            union all
            select *, 'failed' as failed
            from Failed)
   , t2 as (select date, state
            from t1
            where date between '2019-01-01' and '2019-12-31'
            order by date)
   , t3 as (select *, row_number() over (partition by state order by date) r1
            from t2)
   , t4 as (select *, date_sub(date, interval r1 day) r2
            from t3
            order by date)
select distinct state                                                        period_state,
                first_value(date) over (partition by state,r2 order by date) start_date,
                max(date) over (partition by state,r2 )                      end_date
# last_value(date) over (partition by state,r2 order by date rows between unbounded preceding and unbounded following ) end_date
from t4
order by start_date;

总结:

①最后求end_date 时用last_value就会出错 换了一种写法用的max

②碰到日期 求最大 最小 可以优先考虑max min函数

③注意排序 不然数据多的时候 会出现错乱

④first_value 取第一个值 注意排序

⑤last_value 取最后一个值 它默认范围是

rows between unbounded preceding and current row

要想使用它 需要重新设置范围 如下

order by date rows between unbounded preceding and unbounded following

相关推荐
Elastic 中国社区官方博客7 分钟前
JavaScript 中使用 Elasticsearch 的正确方式,第一部分
大数据·开发语言·javascript·数据库·elasticsearch·搜索引擎·全文检索
vvilkim23 分钟前
深度解析:Redis 性能优化全方位指南
数据库·redis·性能优化
小光学长34 分钟前
基于vue框架的东莞市二手相机交易管理系统5yz0u(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。
数据库
Freedom℡44 分钟前
Spark,SparkSQL操作Mysql, 创建数据库和表
数据库·spark
羊羊羊i1 小时前
Redis进阶知识
数据库·redis·缓存
枷锁—sha1 小时前
SQL注入——Sqlmap工具使用
数据库·sql·安全·web安全
进击的CJR2 小时前
MySQL 8.0 OCP 英文题库解析(五)
数据库·mysql·开闭原则
观无5 小时前
数据库DDL
数据库·oracle
消失在人海中5 小时前
Oracle 内存优化
数据库·oracle
昭阳~6 小时前
MySQL读写分离
数据库·mysql