LeetCode_sql_day27(1225.报告系统状态的连续信息)

目录

[描述: 1225.报告系统状态的连续信息](#描述: 1225.报告系统状态的连续信息)

数据准备:

分析:

代码:

总结:


描述: 1225.报告系统状态的连续信息

表:Failed

复制代码
+--------------+---------+
| Column Name  | Type    |
+--------------+---------+
| fail_date    | date    |
+--------------+---------+
该表主键为 fail_date (具有唯一值的列)。
该表包含失败任务的天数.

表: Succeeded

复制代码
+--------------+---------+
| Column Name  | Type    |
+--------------+---------+
| success_date | date    |
+--------------+---------+
该表主键为 success_date (具有唯一值的列)。
该表包含成功任务的天数.

系统 每天 运行一个任务。每个任务都独立于先前的任务。任务的状态可以是失败或是成功。

编写解决方案找出 2019-01-012019-12-31 期间任务连续同状态 period_state 的起止日期(start_dateend_date)。即如果任务失败了,就是失败状态的起止日期,如果任务成功了,就是成功状态的起止日期。

最后结果按照起始日期 start_date 排序

返回结果样例如下所示:

示例 1:

复制代码
输入:
Failed table:
+-------------------+
| fail_date         |
+-------------------+
| 2018-12-28        |
| 2018-12-29        |
| 2019-01-04        |
| 2019-01-05        |
+-------------------+
Succeeded table:
+-------------------+
| success_date      |
+-------------------+
| 2018-12-30        |
| 2018-12-31        |
| 2019-01-01        |
| 2019-01-02        |
| 2019-01-03        |
| 2019-01-06        |
+-------------------+
输出:
+--------------+--------------+--------------+
| period_state | start_date   | end_date     |
+--------------+--------------+--------------+
| succeeded    | 2019-01-01   | 2019-01-03   |
| failed       | 2019-01-04   | 2019-01-05   |
| succeeded    | 2019-01-06   | 2019-01-06   |
+--------------+--------------+--------------+
解释:
结果忽略了 2018 年的记录,因为我们只关心从 2019-01-01 到 2019-12-31 的记录
从 2019-01-01 到 2019-01-03 所有任务成功,系统状态为 "succeeded"。
从 2019-01-04 到 2019-01-05 所有任务失败,系统状态为 "failed"。
从 2019-01-06 到 2019-01-06 所有任务成功,系统状态为 "succeeded"。

数据准备:

sql 复制代码
Create table If Not Exists Failed (fail_date date)
Create table If Not Exists Succeeded (success_date date)
Truncate table Failed
insert into Failed (fail_date) values ('2018-12-28')
insert into Failed (fail_date) values ('2018-12-29')
insert into Failed (fail_date) values ('2019-01-04')
insert into Failed (fail_date) values ('2019-01-05')
Truncate table Succeeded
insert into Succeeded (success_date) values ('2018-12-30')
insert into Succeeded (success_date) values ('2018-12-31')
insert into Succeeded (success_date) values ('2019-01-01')
insert into Succeeded (success_date) values ('2019-01-02')
insert into Succeeded (success_date) values ('2019-01-03')
insert into Succeeded (success_date) values ('2019-01-06')

分析:

① 首先先加一列状态列 同时union all连接 两张表

复制代码
select success_date date, 'succeeded' as state
            from Succeeded
            union all
            select *, 'failed' as failed
            from Failed

②根据日期排序 同时筛选数据

复制代码
with t1 as (
select success_date date, 'succeeded' as state
            from Succeeded
            union all
            select *, 'failed' as failed
            from Failed)
   select date, state
            from t1
            where date between '2019-01-01' and '2019-12-31'
            order by date

③根据状态分组 根据日期排名

复制代码
with t1 as (select success_date date, 'succeeded' as state
            from Succeeded
            union all
            select *, 'failed' as failed
            from Failed)
   , t2 as (
   select date, state
            from t1
            where date between '2019-01-01' and '2019-12-31'
            order by date)
   select *, row_number() over (partition by state order by date) r1
            from t2

④ 构造差值 date 减去r1 求一个辅助日期 如果辅助日期相同 说明是连续的

复制代码
with t1 as (select success_date date, 'succeeded' as state
            from Succeeded
            union all
            select *, 'failed' as failed
            from Failed)
   , t2 as (
   select date, state
            from t1
            where date between '2019-01-01' and '2019-12-31'
            order by date)
   , t3 as (
   select *, row_number() over (partition by state order by date) r1
            from t2)
   select *, date_sub(date, interval r1 day) r2
            from t3
            order by date

⑤ 根据状态state和辅助列r2分组 根据日期排序 求出 每组最小的/第一个日期 和 最大的/最后一个日期

复制代码
select distinct state                                                        period_state,
                first_value(date) over (partition by state,r2 order by date) start_date,
                max(date) over (partition by state,r2 )                      end_date
# last_value(date) over (partition by state,r2 order by date rows between unbounded preceding and unbounded following ) end_date
# 提供两种方法
from t4
order by start_date

代码:

sql 复制代码
with t1 as (select success_date date, 'succeeded' as state
            from Succeeded
            union all
            select *, 'failed' as failed
            from Failed)
   , t2 as (select date, state
            from t1
            where date between '2019-01-01' and '2019-12-31'
            order by date)
   , t3 as (select *, row_number() over (partition by state order by date) r1
            from t2)
   , t4 as (select *, date_sub(date, interval r1 day) r2
            from t3
            order by date)
select distinct state                                                        period_state,
                first_value(date) over (partition by state,r2 order by date) start_date,
                max(date) over (partition by state,r2 )                      end_date
# last_value(date) over (partition by state,r2 order by date rows between unbounded preceding and unbounded following ) end_date
from t4
order by start_date;

总结:

①最后求end_date 时用last_value就会出错 换了一种写法用的max

②碰到日期 求最大 最小 可以优先考虑max min函数

③注意排序 不然数据多的时候 会出现错乱

④first_value 取第一个值 注意排序

⑤last_value 取最后一个值 它默认范围是

rows between unbounded preceding and current row

要想使用它 需要重新设置范围 如下

order by date rows between unbounded preceding and unbounded following

相关推荐
十八旬1 小时前
苍穹外卖项目实战(day7-1)-缓存菜品和缓存套餐功能-记录实战教程、问题的解决方法以及完整代码
java·数据库·spring boot·redis·缓存·spring cache
要一起看日出3 小时前
MVCC-多版本并发控制
数据库·mysql·mvcc
Hx__3 小时前
MySQL InnoDB 的 MVCC 机制
数据库·mysql
速易达网络3 小时前
ASP.NET MVC 连接 MySQL 数据库查询示例
数据库·asp.net·mvc
玉衡子3 小时前
MySQL基础架构全面解析
数据库·后端
梦中的天之酒壶3 小时前
Redis Stack扩展功能
数据库·redis·bootstrap
emma羊羊3 小时前
【 SQL注入漏洞靶场】第二关文件读写
sql·网络安全·靶场·sql注入
GreatSQL3 小时前
GreatSQL分页查询优化案例实战
数据库
Leo.yuan4 小时前
不同数据仓库模型有什么不同?企业如何选择适合的数据仓库模型?
大数据·数据库·数据仓库·信息可视化·spark
麦兜*4 小时前
MongoDB 6.0 新特性解读:时间序列集合与加密查询
数据库·spring boot·mongodb·spring·spring cloud·系统架构