OpenCV图像文件读写(4)解码图像数据函数imdecode()的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

从内存缓冲区读取图像。

imdecode 函数从指定的内存缓冲区读取图像。如果缓冲区太短或包含无效数据,函数将返回一个空矩阵 (Mat::data==NULL)。

参见 cv::imread 了解支持的格式和标志的描述。

注意

在处理彩色图像的情况下,解码后的图像将按 B G R 顺序存储通道。

函数原型1

cpp 复制代码
Mat cv::imdecode	
(
	InputArray 	buf,
	int 	flags 
)	

参数1

  • 参数buf:包含图像数据的字节数组。通常是一个 std::vector 类型的对象。
  • 参数flags:解码图像的标志,可以是以下值之一:
    • IMREAD_COLOR(默认):加载彩色图像。任何 alpha 通道都会被忽略。
    • MREAD_GRAYSCALE:以灰度模式加载图像。
    • MREAD_UNCHANGED:加载图像,包括 alpha 通道(如果有的话)。
    • IMREAD_ANYDEPTH:假设任何深度。
    • IMREAD_ANYCOLOR:假设任何颜色模式。
    • IMREAD_LOAD_GDAL:当从文件加载时,如果设置了此标志,则会使用 GDAL 库。
    • IMREAD_REDUCED_COLOR_2:加载图像,并将其缩小到原来的 1/2。
    • IMREAD_REDUCED_COLOR_4:加载图像,并将其缩小到原来的 1/4。
    • IMREAD_REDUCED_COLOR_8:加载图像,并将其缩小到原来的 1/8。
    • IMREAD_REDUCED_GRAYSCALE_2:加载图像,并将其缩小到原来的 1/2,并转换为灰度。
    • IMREAD_REDUCED_GRAYSCALE_4:加载图像,并将其缩小到原来的 1/4,并转换为灰度。
    • IMREAD_REDUCED_GRAYSCALE_8:加载图像,并将其缩小到原来的 1/8,并转换为灰度。
    • IMREAD_IGNORE_ORIENTATION:忽略 EXIF 中的 Orientation 字段

函数原型2

函数原型1的重载函数,仅仅是参数的不同

cpp 复制代码
Mat cv::imdecode	
(
	InputArray 	buf,
	int 	flags,
	Mat * 	dst 
)	

参数2

  • 参数buf 输入数组或字节向量。
  • 参数flags 与 cv::imread 中相同的标志,参见 cv::ImreadModes
  • 参数dst 可选的输出占位符,用于存放解码后的矩阵。当函数反复调用且图像大小相同时,它可以节省图像重新分配的开销。

返回值

解码后的图像。如果解码失败,则返回空的 cv::Mat 对象。

代码示例

cpp 复制代码
#include <fstream>
#include <iostream>
#include <opencv2/opencv.hpp>
#include <vector>

int main()
{
    // 图像文件路径
    std::string filename = "/media/dingxin/data/study/OpenCV/sources/images/hawk.jpg";

    // 读取图像文件到内存缓冲区
    std::ifstream file( filename, std::ios::binary );
    if ( !file.is_open() )
    {
        std::cout << "Failed to open file." << std::endl;
        return -1;
    }

    std::vector< unsigned char > buffer( ( std::istreambuf_iterator< char >( file ) ), std::istreambuf_iterator< char >() );
    file.close();

    // 使用 cv::imdecode 解码图像数据
    cv::Mat img = cv::imdecode( buffer, cv::IMREAD_COLOR );

    if ( img.empty() )
    {
        std::cout << "Failed to decode image data." << std::endl;
        return -1;
    }

    // 显示图像
    cv::imshow( "Decoded Image", img );
    cv::waitKey( 0 );

    return 0;
}

运行结果

相关推荐
陈哥聊测试1 天前
AI Agent是新一轮「技术泡沫」?
人工智能·程序员·产品
星期天要睡觉1 天前
提示词(Prompt)——链式思维提示词(Chain-of-Thought Prompting)在大模型中的调用(以 Qwen 模型为例)
开发语言·人工智能·python·语言模型·prompt
掘金安东尼1 天前
GitHub 发布 Agent HQ:欢迎回家,智能体们
人工智能
说私域1 天前
基于“开源AI智能名片链动2+1模式S2B2C商城小程序”的会员制培养策略研究
人工智能·小程序
caiyueloveclamp1 天前
2025年免费aippt排行
人工智能·ai生成ppt·aippt·免费aippt·排行
MarkHD1 天前
Dify从入门到精通 第33天 基于GPT-4V构建图片描述生成器与视觉问答机器人
人工智能·机器人
wwlsm_zql1 天前
阿里国际AI翻译模型Marco霸榜WMT,英中赛道超越GPT-4.1与Gem
人工智能
余衫马1 天前
GPT结构剖析:从“词袋”到“思想”的魔法之旅
人工智能·gpt·大模型
mit6.8241 天前
[nanoGPT] 检查点 | `ckpt.pt`记忆 | 预训练模型加载`from_pretrained`
人工智能·深度学习·机器学习
知了一笑1 天前
项目效率翻倍,做对了什么?
前端·人工智能·后端