超越sora,最新文生视频CogVideoX-5b模型分享

CogVideoX-5B是由智谱 AI 开源的一款先进的文本到视频生成模型,它是 CogVideoX 系列中的更大尺寸版本,旨在提供更高质量的视频生成效果。

CogVideoX-5B 采用了 3D 因果变分自编码器(3D causal VAE)技术,通过在空间和时间维度上对视频进行压缩,大幅度降低了计算复杂度,同时提高了视频生成的连续性和质量。

此外,模型还使用了专家 Transformer 技术,通过 3D-RoPE 作为位置编码,并采用 3D 全注意力机制来进行时空联合建模,改善视频与文本的对齐。

CogVideoX-5B模型能够生成高达 720×480 分辨率、每秒 8 帧、最长 6 秒的视频,使得生成的视频在动态表现上更为连贯流畅。

在硬件适配性上,CogVideoX-5B表现出色,可以在 RTX 3060 等桌面端显卡上运行,推理门槛大幅降低,使得更多的用户能够体验到顶尖的 AI 视频生成技术。

CogVideoX-5B模型支持多种精度的推理方式,如 FP16、BF16、FP32、INT8 等,用户可以根据自身硬件情况灵活选择,以在性能和效率之间找到最佳平衡点。

github项目地址:https://github.com/THUDM/CogVideo。

一、环境安装

1、python环境

建议安装python版本在3.10以上。

2、pip库安装

pip install torch==2.4.0+cu118 torchvision==0.19.0+cu118 torchaudio==2.4.0 --extra-index-url https://download.pytorch.org/whl/cu118

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

3、CogVideoX-5b模型下载

git lfs install

git clone https://www.modelscope.cn/AI-ModelScope/CogVideoX-5b.git

二**、功能测试**

1、运行测试

(1)python代码调用测试

复制代码
import torch
from diffusers import CogVideoXPipeline
from diffusers.utils import export_to_video
import logging

def generate_video(model_path, prompt, output_path, num_videos=1, inference_steps=50, num_frames=49, guidance_scale=6, seed=42, fps=8):
    try:
        # Initialize logger
        logging.basicConfig(level=logging.INFO)
        logger = logging.getLogger("VideoGeneration")

        # Load model
        logger.info("Loading model from path: %s", model_path)
        pipe = CogVideoXPipeline.from_pretrained(
            model_path,
            torch_dtype=torch.bfloat16
        )

        pipe.enable_model_cpu_offload()
        pipe.vae.enable_tiling()
        
        # Log device information
        logger.info("Using device: %s", torch.cuda.get_device_name(0))
        
        # Generate video
        logger.info("Generating video with prompt: %s", prompt)
        video = pipe(
            prompt=prompt,
            num_videos_per_prompt=num_videos,
            num_inference_steps=inference_steps,
            num_frames=num_frames,
            guidance_scale=guidance_scale,
            generator=torch.Generator(device="cuda").manual_seed(seed),
        ).frames[0]
        
        # Export video
        logger.info("Exporting video to file: %s", output_path)
        export_to_video(video, output_path, fps=fps)
        
        logger.info("Video generation completed successfully.")
    except Exception as e:
        logger.error("An error occurred during video generation: %s", str(e))

if __name__ == "__main__":
    model_path = "CogVideoX-5b"
    prompt = ("A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. "
              "The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, "
              "watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. "
              "The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and "
              "vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance.")
    output_path = "output.mp4"
    
    generate_video(model_path, prompt, output_path)

未完......

更多详细的欢迎关注:杰哥新技术

相关推荐
TG:@yunlaoda360 云老大几秒前
谷歌发布 Veo 3.1 视频生成模型:有声电影、长视频叙事与人物定制的实测与展望
人工智能·音视频·googlecloud
大连好光景2 分钟前
LSTM模型做分类任务2(PyTorch实现)
人工智能·pytorch·lstm
阿里巴巴淘系技术团队官网博客4 分钟前
让AI打出丝滑连招:编码-部署-自测-改bug
人工智能·bug
LeonDL1681 小时前
基于YOLO11深度学习的电梯内车辆识别系统【Python源码+Pyqt5界面+数据集+安装使用教程+训练代码】【附下载链接】
人工智能·python·深度学习·pyqt5·yolo数据集·yolo11深度学习·电梯内车辆识别系统
熊猫_豆豆2 小时前
用AI训练数据,预测房地产价格走势(Python版)
人工智能·ai模型·房产预测
听雨~の(>^ω^<3 小时前
OSTrack视频单目标跟踪
人工智能·目标跟踪·音视频
说私域3 小时前
基于“开源AI智能名片链动2+1模式S2B2C商城小程序”的私域用户池构建与运营研究
人工智能·小程序
海边夕阳20063 小时前
【每日一个AI小知识】:什么是多模态AI?
人工智能
songyuc5 小时前
【S2ANet】Align Deep Features for Oriented Object Detection 译读笔记
人工智能·笔记·目标检测
asdfg12589635 小时前
DETR:新一代目标检测范式综述
人工智能·目标检测·目标跟踪