Leecode_SQL50_1661. Average Time of Process per Machine

Leecode_SQL50_1661. Average Time of Process per Machine

Problem description

Table: Activity

±---------------±--------+

| Column Name | Type |

±---------------±--------+

| machine_id | int |

| process_id | int |

| activity_type | enum |

| timestamp | float |

±---------------±--------+

The table shows the user activities for a factory website.

(machine_id, process_id, activity_type) is the primary key (combination of columns with unique values) of this table.

machine_id is the ID of a machine.

process_id is the ID of a process running on the machine with ID machine_id.

activity_type is an ENUM (category) of type ('start', 'end').

timestamp is a float representing the current time in seconds.

'start' means the machine starts the process at the given timestamp and 'end' means the machine ends the process at the given timestamp.

The 'start' timestamp will always be before the 'end' timestamp for every (machine_id, process_id) pair.

It is guaranteed that each (machine_id, process_id) pair has a 'start' and 'end' timestamp.

There is a factory website that has several machines each running the same number of processes. Write a solution to find the average time each machine takes to complete a process.

The time to complete a process is the 'end' timestamp minus the 'start' timestamp. The average time is calculated by the total time to complete every process on the machine divided by the number of processes that were run.

The resulting table should have the machine_id along with the average time as processing_time, which should be rounded to 3 decimal places.

Return the result table in any order.

The result format is in the following example.

Example 1:

Input:

Activity table:

±-----------±-----------±--------------±----------+

| machine_id | process_id | activity_type | timestamp |

±-----------±-----------±--------------±----------+

| 0 | 0 | start | 0.712 |

| 0 | 0 | end | 1.520 |

| 0 | 1 | start | 3.140 |

| 0 | 1 | end | 4.120 |

| 1 | 0 | start | 0.550 |

| 1 | 0 | end | 1.550 |

| 1 | 1 | start | 0.430 |

| 1 | 1 | end | 1.420 |

| 2 | 0 | start | 4.100 |

| 2 | 0 | end | 4.512 |

| 2 | 1 | start | 2.500 |

| 2 | 1 | end | 5.000 |

±-----------±-----------±--------------±----------+

Output:

±-----------±----------------+

| machine_id | processing_time |

±-----------±----------------+

| 0 | 0.894 |

| 1 | 0.995 |

| 2 | 1.456 |

±-----------±----------------+

Explanation:

There are 3 machines running 2 processes each.

Machine 0's average time is ((1.520 - 0.712) + (4.120 - 3.140)) / 2 = 0.894

Machine 1's average time is ((1.550 - 0.550) + (1.420 - 0.430)) / 2 = 0.995

Machine 2's average time is ((4.512 - 4.100) + (5.000 - 2.500)) / 2 = 1.456

My solution

sql 复制代码
WITH st AS (
    SELECT machine_id, process_id, timestamp
    FROM Activity
    WHERE activity_type = 'start'
), 
en AS (
    SELECT machine_id, process_id, timestamp
    FROM Activity
    WHERE activity_type = 'end'
), 
b AS (
    SELECT st.machine_id, st.process_id, (en.timestamp - st.timestamp) AS time_taken
    FROM st 
        JOIN en 
            ON st.machine_id = en.machine_id 
            AND st.process_id = en.process_id
)

SELECT b.machine_id, ROUND(AVG(time_taken), 3) AS processing_time
FROM b
GROUP BY b.machine_id

Other solutions

sql 复制代码
select a1.machine_id, round(avg(a2.timestamp-a1.timestamp), 3) as processing_time 
from Activity a1
	join Activity a2 
		on a1.machine_id=a2.machine_id 
			and a1.process_id=a2.process_id
			and a1.activity_type='start' 
			and a2.activity_type='end'
group by a1.machine_id
sql 复制代码
Select a.machine_id,ROUND(AVG(b.timestamp-a.timestamp), 3)as processing_time 
from Activity a, Activity b
where a.process_id=b.process_id 
	AND a.machine_id=b.machine_id
	AND a.activity_type="start" 
	AND b.activity_type="end"
group by machine_id;
相关推荐
小乌龟不会飞7 分钟前
Ubuntu 安装 etcd 与 etcd-cpp-apiv3
数据库·etcd
古月居GYH3 小时前
【数据分析】如何在PyCharm中高效配置和使用SQL
ide·sql·pycharm
计算机毕设定制辅导-无忧学长8 小时前
西门子 PLC 与 Modbus 集成:S7-1500 RTU/TCP 配置指南(一)
服务器·数据库·tcp/ip
程序员柳8 小时前
基于微信小程序的校园二手交易平台、微信小程序校园二手商城源代码+数据库+使用说明,layui+微信小程序+Spring Boot
数据库·微信小程序·layui
梦在深巷、9 小时前
MySQL/MariaDB数据库主从复制之基于二进制日志的方式
linux·数据库·mysql·mariadb
IT乌鸦坐飞机9 小时前
ansible部署数据库服务随机启动并创建用户和设置用户有完全权限
数据库·ansible·centos7
IT_10249 小时前
Spring Boot项目开发实战销售管理系统——数据库设计!
java·开发语言·数据库·spring boot·后端·oracle
祁思妙想10 小时前
八股学习(三)---MySQL
数据库·学习·mysql
惊骇世俗王某人10 小时前
1.MySQL之如何定位慢查询
数据库·mysql
程序员张310 小时前
SQL分析与打印-p6spy组件
spring boot·sql·mybatis·mybatisplus·p6spy