Leecode_SQL50_1661. Average Time of Process per Machine

Leecode_SQL50_1661. Average Time of Process per Machine

Problem description

Table: Activity

±---------------±--------+

| Column Name | Type |

±---------------±--------+

| machine_id | int |

| process_id | int |

| activity_type | enum |

| timestamp | float |

±---------------±--------+

The table shows the user activities for a factory website.

(machine_id, process_id, activity_type) is the primary key (combination of columns with unique values) of this table.

machine_id is the ID of a machine.

process_id is the ID of a process running on the machine with ID machine_id.

activity_type is an ENUM (category) of type ('start', 'end').

timestamp is a float representing the current time in seconds.

'start' means the machine starts the process at the given timestamp and 'end' means the machine ends the process at the given timestamp.

The 'start' timestamp will always be before the 'end' timestamp for every (machine_id, process_id) pair.

It is guaranteed that each (machine_id, process_id) pair has a 'start' and 'end' timestamp.

There is a factory website that has several machines each running the same number of processes. Write a solution to find the average time each machine takes to complete a process.

The time to complete a process is the 'end' timestamp minus the 'start' timestamp. The average time is calculated by the total time to complete every process on the machine divided by the number of processes that were run.

The resulting table should have the machine_id along with the average time as processing_time, which should be rounded to 3 decimal places.

Return the result table in any order.

The result format is in the following example.

Example 1:

Input:

Activity table:

±-----------±-----------±--------------±----------+

| machine_id | process_id | activity_type | timestamp |

±-----------±-----------±--------------±----------+

| 0 | 0 | start | 0.712 |

| 0 | 0 | end | 1.520 |

| 0 | 1 | start | 3.140 |

| 0 | 1 | end | 4.120 |

| 1 | 0 | start | 0.550 |

| 1 | 0 | end | 1.550 |

| 1 | 1 | start | 0.430 |

| 1 | 1 | end | 1.420 |

| 2 | 0 | start | 4.100 |

| 2 | 0 | end | 4.512 |

| 2 | 1 | start | 2.500 |

| 2 | 1 | end | 5.000 |

±-----------±-----------±--------------±----------+

Output:

±-----------±----------------+

| machine_id | processing_time |

±-----------±----------------+

| 0 | 0.894 |

| 1 | 0.995 |

| 2 | 1.456 |

±-----------±----------------+

Explanation:

There are 3 machines running 2 processes each.

Machine 0's average time is ((1.520 - 0.712) + (4.120 - 3.140)) / 2 = 0.894

Machine 1's average time is ((1.550 - 0.550) + (1.420 - 0.430)) / 2 = 0.995

Machine 2's average time is ((4.512 - 4.100) + (5.000 - 2.500)) / 2 = 1.456

My solution

sql 复制代码
WITH st AS (
    SELECT machine_id, process_id, timestamp
    FROM Activity
    WHERE activity_type = 'start'
), 
en AS (
    SELECT machine_id, process_id, timestamp
    FROM Activity
    WHERE activity_type = 'end'
), 
b AS (
    SELECT st.machine_id, st.process_id, (en.timestamp - st.timestamp) AS time_taken
    FROM st 
        JOIN en 
            ON st.machine_id = en.machine_id 
            AND st.process_id = en.process_id
)

SELECT b.machine_id, ROUND(AVG(time_taken), 3) AS processing_time
FROM b
GROUP BY b.machine_id

Other solutions

sql 复制代码
select a1.machine_id, round(avg(a2.timestamp-a1.timestamp), 3) as processing_time 
from Activity a1
	join Activity a2 
		on a1.machine_id=a2.machine_id 
			and a1.process_id=a2.process_id
			and a1.activity_type='start' 
			and a2.activity_type='end'
group by a1.machine_id
sql 复制代码
Select a.machine_id,ROUND(AVG(b.timestamp-a.timestamp), 3)as processing_time 
from Activity a, Activity b
where a.process_id=b.process_id 
	AND a.machine_id=b.machine_id
	AND a.activity_type="start" 
	AND b.activity_type="end"
group by machine_id;
相关推荐
老华带你飞34 分钟前
实习记录小程序|基于SSM+Vue的实习记录小程序设计与实现(源码+数据库+文档)
java·数据库·spring boot·小程序·论文·毕设·实习记录小程序
Elastic 中国社区官方博客1 小时前
Elasticsearch 索引副本数
大数据·数据库·elasticsearch·搜索引擎·全文检索
冬瓜的编程笔记2 小时前
【八股战神篇】MySQL高频面试题
数据库·mysql·面试
赵渝强老师2 小时前
【赵渝强老师】Memcached的路由算法
数据库·redis·nosql·memcached
belldeep2 小时前
groovy 如何遍历 postgresql 所有的用户表 ?
数据库·postgresql
2401_896008192 小时前
PostgreSQL
数据库·postgresql
搞不懂语言的程序员3 小时前
Redis Sentinel如何实现高可用?
数据库·redis·sentinel
wangzhongyudie3 小时前
SQL实战:06交叉日期打折问题求解
数据库·sql
2401_841003984 小时前
mysql高可用
数据库·mysql