Leecode_SQL50_1661. Average Time of Process per Machine

Leecode_SQL50_1661. Average Time of Process per Machine

Problem description

Table: Activity

±---------------±--------+

| Column Name | Type |

±---------------±--------+

| machine_id | int |

| process_id | int |

| activity_type | enum |

| timestamp | float |

±---------------±--------+

The table shows the user activities for a factory website.

(machine_id, process_id, activity_type) is the primary key (combination of columns with unique values) of this table.

machine_id is the ID of a machine.

process_id is the ID of a process running on the machine with ID machine_id.

activity_type is an ENUM (category) of type ('start', 'end').

timestamp is a float representing the current time in seconds.

'start' means the machine starts the process at the given timestamp and 'end' means the machine ends the process at the given timestamp.

The 'start' timestamp will always be before the 'end' timestamp for every (machine_id, process_id) pair.

It is guaranteed that each (machine_id, process_id) pair has a 'start' and 'end' timestamp.

There is a factory website that has several machines each running the same number of processes. Write a solution to find the average time each machine takes to complete a process.

The time to complete a process is the 'end' timestamp minus the 'start' timestamp. The average time is calculated by the total time to complete every process on the machine divided by the number of processes that were run.

The resulting table should have the machine_id along with the average time as processing_time, which should be rounded to 3 decimal places.

Return the result table in any order.

The result format is in the following example.

Example 1:

Input:

Activity table:

±-----------±-----------±--------------±----------+

| machine_id | process_id | activity_type | timestamp |

±-----------±-----------±--------------±----------+

| 0 | 0 | start | 0.712 |

| 0 | 0 | end | 1.520 |

| 0 | 1 | start | 3.140 |

| 0 | 1 | end | 4.120 |

| 1 | 0 | start | 0.550 |

| 1 | 0 | end | 1.550 |

| 1 | 1 | start | 0.430 |

| 1 | 1 | end | 1.420 |

| 2 | 0 | start | 4.100 |

| 2 | 0 | end | 4.512 |

| 2 | 1 | start | 2.500 |

| 2 | 1 | end | 5.000 |

±-----------±-----------±--------------±----------+

Output:

±-----------±----------------+

| machine_id | processing_time |

±-----------±----------------+

| 0 | 0.894 |

| 1 | 0.995 |

| 2 | 1.456 |

±-----------±----------------+

Explanation:

There are 3 machines running 2 processes each.

Machine 0's average time is ((1.520 - 0.712) + (4.120 - 3.140)) / 2 = 0.894

Machine 1's average time is ((1.550 - 0.550) + (1.420 - 0.430)) / 2 = 0.995

Machine 2's average time is ((4.512 - 4.100) + (5.000 - 2.500)) / 2 = 1.456

My solution

sql 复制代码
WITH st AS (
    SELECT machine_id, process_id, timestamp
    FROM Activity
    WHERE activity_type = 'start'
), 
en AS (
    SELECT machine_id, process_id, timestamp
    FROM Activity
    WHERE activity_type = 'end'
), 
b AS (
    SELECT st.machine_id, st.process_id, (en.timestamp - st.timestamp) AS time_taken
    FROM st 
        JOIN en 
            ON st.machine_id = en.machine_id 
            AND st.process_id = en.process_id
)

SELECT b.machine_id, ROUND(AVG(time_taken), 3) AS processing_time
FROM b
GROUP BY b.machine_id

Other solutions

sql 复制代码
select a1.machine_id, round(avg(a2.timestamp-a1.timestamp), 3) as processing_time 
from Activity a1
	join Activity a2 
		on a1.machine_id=a2.machine_id 
			and a1.process_id=a2.process_id
			and a1.activity_type='start' 
			and a2.activity_type='end'
group by a1.machine_id
sql 复制代码
Select a.machine_id,ROUND(AVG(b.timestamp-a.timestamp), 3)as processing_time 
from Activity a, Activity b
where a.process_id=b.process_id 
	AND a.machine_id=b.machine_id
	AND a.activity_type="start" 
	AND b.activity_type="end"
group by machine_id;
相关推荐
goxingman1 小时前
Oracle视图基础
数据库·oracle
黎相思1 小时前
MySQL索引特性
数据库·mysql
rit84324992 小时前
压缩感知信号恢复算法:OMP与CoSaMP对比分析
数据库·人工智能·算法
Forget_85502 小时前
RHCE复习作业4
数据库
f***28142 小时前
【零基础学Mysql】常用函数讲解,提升数据操作效率的利器
数据库·mysql
+VX:Fegn08952 小时前
计算机毕业设计|基于springboot+vue的学校课程管理系统(源码+数据库+文档)
java·数据库·vue.js·spring boot·后端·课程设计
Elastic 中国社区官方博客2 小时前
ES|QL 在 9.2:智能查找连接和时间序列支持
大数据·数据库·人工智能·sql·elasticsearch·搜索引擎·全文检索
q***01652 小时前
PostgreSQL 17 发布了!非常稳定的版本
数据库·postgresql
菜鸟冲锋号3 小时前
问题:增量关联(实时同步新数据) 这个场景中,如果hudi_pay 变更了一条数据,hudi_order_pay_join 结果的数据会跟着变化吗
服务器·前端·数据库
Wilson Chen3 小时前
深入解剖 Redis Cluster:从 16384 分片原理到故障自动转移的硬核实战
数据库·redis·缓存