Leecode_SQL50_1661. Average Time of Process per Machine

Leecode_SQL50_1661. Average Time of Process per Machine

Problem description

Table: Activity

±---------------±--------+

| Column Name | Type |

±---------------±--------+

| machine_id | int |

| process_id | int |

| activity_type | enum |

| timestamp | float |

±---------------±--------+

The table shows the user activities for a factory website.

(machine_id, process_id, activity_type) is the primary key (combination of columns with unique values) of this table.

machine_id is the ID of a machine.

process_id is the ID of a process running on the machine with ID machine_id.

activity_type is an ENUM (category) of type ('start', 'end').

timestamp is a float representing the current time in seconds.

'start' means the machine starts the process at the given timestamp and 'end' means the machine ends the process at the given timestamp.

The 'start' timestamp will always be before the 'end' timestamp for every (machine_id, process_id) pair.

It is guaranteed that each (machine_id, process_id) pair has a 'start' and 'end' timestamp.

There is a factory website that has several machines each running the same number of processes. Write a solution to find the average time each machine takes to complete a process.

The time to complete a process is the 'end' timestamp minus the 'start' timestamp. The average time is calculated by the total time to complete every process on the machine divided by the number of processes that were run.

The resulting table should have the machine_id along with the average time as processing_time, which should be rounded to 3 decimal places.

Return the result table in any order.

The result format is in the following example.

Example 1:

Input:

Activity table:

±-----------±-----------±--------------±----------+

| machine_id | process_id | activity_type | timestamp |

±-----------±-----------±--------------±----------+

| 0 | 0 | start | 0.712 |

| 0 | 0 | end | 1.520 |

| 0 | 1 | start | 3.140 |

| 0 | 1 | end | 4.120 |

| 1 | 0 | start | 0.550 |

| 1 | 0 | end | 1.550 |

| 1 | 1 | start | 0.430 |

| 1 | 1 | end | 1.420 |

| 2 | 0 | start | 4.100 |

| 2 | 0 | end | 4.512 |

| 2 | 1 | start | 2.500 |

| 2 | 1 | end | 5.000 |

±-----------±-----------±--------------±----------+

Output:

±-----------±----------------+

| machine_id | processing_time |

±-----------±----------------+

| 0 | 0.894 |

| 1 | 0.995 |

| 2 | 1.456 |

±-----------±----------------+

Explanation:

There are 3 machines running 2 processes each.

Machine 0's average time is ((1.520 - 0.712) + (4.120 - 3.140)) / 2 = 0.894

Machine 1's average time is ((1.550 - 0.550) + (1.420 - 0.430)) / 2 = 0.995

Machine 2's average time is ((4.512 - 4.100) + (5.000 - 2.500)) / 2 = 1.456

My solution

sql 复制代码
WITH st AS (
    SELECT machine_id, process_id, timestamp
    FROM Activity
    WHERE activity_type = 'start'
), 
en AS (
    SELECT machine_id, process_id, timestamp
    FROM Activity
    WHERE activity_type = 'end'
), 
b AS (
    SELECT st.machine_id, st.process_id, (en.timestamp - st.timestamp) AS time_taken
    FROM st 
        JOIN en 
            ON st.machine_id = en.machine_id 
            AND st.process_id = en.process_id
)

SELECT b.machine_id, ROUND(AVG(time_taken), 3) AS processing_time
FROM b
GROUP BY b.machine_id

Other solutions

sql 复制代码
select a1.machine_id, round(avg(a2.timestamp-a1.timestamp), 3) as processing_time 
from Activity a1
	join Activity a2 
		on a1.machine_id=a2.machine_id 
			and a1.process_id=a2.process_id
			and a1.activity_type='start' 
			and a2.activity_type='end'
group by a1.machine_id
sql 复制代码
Select a.machine_id,ROUND(AVG(b.timestamp-a.timestamp), 3)as processing_time 
from Activity a, Activity b
where a.process_id=b.process_id 
	AND a.machine_id=b.machine_id
	AND a.activity_type="start" 
	AND b.activity_type="end"
group by machine_id;
相关推荐
源代码•宸9 小时前
goframe框架签到系统项目(BITFIELD 命令详解、Redis Key 设计、goframe 框架教程、安装MySQL)
开发语言·数据库·经验分享·redis·后端·mysql·golang
川贝枇杷膏cbppg9 小时前
Redis 的 AOF
java·数据库·redis
TG:@yunlaoda360 云老大9 小时前
如何在华为云国际站代理商控制台进行SFS Turbo的性能与容量核查?
服务器·网络·数据库·华为云
ytttr87310 小时前
MATLAB基于LDA的人脸识别算法实现(ORL数据库)
数据库·算法·matlab
云老大TG:@yunlaoda36010 小时前
如何进行华为云国际站代理商跨Region适配?
大数据·数据库·华为云·负载均衡
思成不止于此10 小时前
【MySQL 零基础入门】事务精讲(二):ACID 特性与并发问题
数据库·笔记·学习·mysql
Boilermaker199210 小时前
[MySQL] 初识 MySQL 与 SQL 基础
数据库·mysql
今晚务必早点睡11 小时前
Redis——快速入门第二课:Redis 常用命令 + 能解决实际问题
数据库·redis·bootstrap
Hello.Reader11 小时前
Flink SQL Materialized Table 语句CREATE / ALTER / DROP介绍
数据库·sql·flink
Boilermaker199211 小时前
[MySQL] 服务器架构
数据库·mysql·架构