多目标跟踪技术相关的GitHub仓库推荐

下面是一些与上述提到的多目标跟踪技术相关的GitHub仓库推荐,涵盖了 DeepSORT、FairMOT、ReID、Tracktor 等经典方法:

1. DeepSORT

  • 仓库地址 : DeepSORT Repository
  • 简介: DeepSORT 是一种结合了卡尔曼滤波和外观特征(通过深度学习提取)的跟踪算法,能够在多目标跟踪中保持较高的 ID 保持率,尤其在有遮挡的情况下表现良好。
  • 功能: 实现了基于外观和运动信息的目标跟踪。

2. FairMOT

  • 仓库地址 : FairMOT Repository
  • 简介: FairMOT 是一个结合了多目标检测和跟踪的实时多目标跟踪算法,通过结合外观信息和中心点检测,在遮挡情况下仍能保持良好的跟踪效果。
  • 功能: 实现多目标检测与跟踪一体化,效果精度高,支持行人、车辆等多目标类型。

3. JDE (Joint Detection and Embedding)

  • 仓库地址 : JDE Repository
  • 简介: JDE 是一种同时进行目标检测和外观特征嵌入的多目标跟踪算法,可以更高效地处理遮挡和 ID 保持问题。
  • 功能: 实现了端到端的检测和重识别(ReID)模型,非常适合大规模多目标跟踪任务。

4. Tracktor

  • 仓库地址 : Tracktor Repository
  • 简介: Tracktor 通过直接扩展目标检测器中的边界框回归模块来进行跟踪,提供了简单而有效的目标跟踪方案,特别是应对遮挡时的目标身份保持。
  • 功能: 使用现成的检测器和回归信息进行跟踪,提升了遮挡恢复的能力。

5. CenterTrack

  • 仓库地址 : CenterTrack Repository
  • 简介: CenterTrack 通过预测目标中心点和运动轨迹来进行多目标跟踪,适用于处理遮挡问题和目标重新出现时的 ID 关联。
  • 功能: 提供了实时的多目标跟踪方案,并且对复杂场景中的遮挡问题有较好的处理能力。

6. GNN-based Tracking

  • 仓库地址 : GNN MOT Repository
  • 简介: 该项目基于图神经网络(GNN)进行多目标跟踪,通过建模目标间的关联和互动,在遮挡和复杂场景下表现出色。
  • 功能: 利用图神经网络处理多目标跟踪任务,特别适用于多目标之间关联性强的场景。

这些 GitHub 仓库提供了多目标跟踪的不同实现,涵盖了常见的遮挡处理和 ID 保持技术。你可以根据需求选择相应的仓库进行使用和研究。

Multi-Object Tracking (MOT) Technologies Analysis Report

Technique Offline Deployment Fine-tuning Quality Performance Rating (Out of 5) Effectiveness (Occlusion Handling, ID Switch) Remarks
YOLOv10-DeepSORT Yes Yes High 4.5 Handles occlusion well, low ID switches【12†source】 Combines state-of-the-art detection (YOLOv10) with DeepSORT tracking, ideal for real-time applications. High accuracy.
YOLOv5-DeepSORT Yes Yes High 4.3 Good occlusion handling but fewer ID switches than FairMOT【14†source】【15†source】 Popular for tracking, especially with YOLOv5's lightweight architecture. DeepSORT ensures robust ID preservation during occlusion.
FairMOT Yes Yes Very High 4.8 Best for occlusion and low ID switch【14†source】【15†source】 Real-time detection and tracking in a single framework, achieves excellent results in complex scenes with fewer ID losses.
Tracktor Yes Yes Medium 4.0 Works well for short-term occlusions, but may struggle with extended ones Combines tracking with object detector's bounding box regressor, but less robust in very crowded scenes.
CenterTrack Yes Yes High 4.2 Good ID switch recovery, but can struggle with complex occlusions Uses center points and heatmap regression for tracking, suitable for real-time scenarios with moderate complexity【14†source】.

Summary of Key Points:

  • Offline Deployment: All methods can be deployed offline, making them suitable for a variety of environments.
  • Fine-tuning: Each of these methods allows for fine-tuning, enabling them to adapt to specific datasets and improve tracking performance.
  • Quality: FairMOT is currently leading in quality due to its anchor-free approach and integrated tracking and detection framework, providing superior ID consistency in complex environments.
  • Performance: FairMOT and YOLOv10-DeepSORT outperform others in scenarios involving frequent occlusions, with low ID switches and better tracking precision.
  • Effectiveness: FairMOT stands out for its ability to handle difficult scenarios, with fewer ID switches and strong occlusion handling, followed closely by YOLOv5-DeepSORT, which excels in real-time applications.

FairMOT remains a top choice for challenging multi-object tracking tasks, especially when occlusion is a concern.

Here are some of the latest and widely-used GitHub repositories and techniques for multi-object tracking (MOT) that address the problem of maintaining object IDs even after occlusions:

  1. YOLOv10 with DeepSORT: This repository combines the YOLOv10 detector with DeepSORT for robust object detection and tracking. DeepSORT is particularly known for handling occlusions better by integrating appearance descriptors with motion-based tracking, reducing ID switches. This setup is ideal for real-time applications【12†source】.

  2. YOLOv5 with DeepSORT: Another popular combination, this repo integrates YOLOv5 with DeepSORT for multi-object tracking. DeepSORT's advanced cosine metric learning helps in recovering object identities after occlusion, making it a reliable option【13†source】【14†source】.

  3. FairMOT: FairMOT is a modern anchor-free approach that tackles object detection and Re-ID in a unified framework. Unlike the two-stage tracker like YOLOv5 + DeepSORT, FairMOT processes detection and tracking simultaneously, offering high precision with fewer identity switches, particularly in complex scenes【14†source】【15†source】.

These repositories are actively maintained and reflect some of the latest advancements in MOT, addressing issues like object occlusion, ID recovery, and real-time performance.

相关推荐
BFT白芙堂28 分钟前
睿尔曼系列机器人——以创新驱动未来,重塑智能协作新生态(上)
人工智能·机器学习·机器人·协作机器人·复合机器人·睿尔曼机器人
aneasystone本尊34 分钟前
使用 MCP 让 Claude Code 集成外部工具
人工智能
静心问道44 分钟前
SEW:无监督预训练在语音识别中的性能-效率权衡
人工智能·语音识别
羊小猪~~1 小时前
【NLP入门系列五】中文文本分类案例
人工智能·深度学习·考研·机器学习·自然语言处理·分类·数据挖掘
xwz小王子1 小时前
从LLM到WM:大语言模型如何进化成具身世界模型?
人工智能·语言模型·自然语言处理
我爱一条柴ya1 小时前
【AI大模型】深入理解 Transformer 架构:自然语言处理的革命引擎
人工智能·ai·ai作画·ai编程·ai写作
静心问道1 小时前
FLAN-T5:规模化指令微调的语言模型
人工智能·语言模型·自然语言处理
李师兄说大模型1 小时前
KDD 2025 | 地理定位中的群体智能:一个多智能体大型视觉语言模型协同框架
人工智能·深度学习·机器学习·语言模型·自然语言处理·大模型·deepseek
静心问道1 小时前
SqueezeBERT:计算机视觉能为自然语言处理在高效神经网络方面带来哪些启示?
人工智能·计算机视觉·自然语言处理
Sherlock Ma1 小时前
百度开源文心一言4.5:论文解读和使用入门
人工智能·百度·自然语言处理·开源·大模型·文心一言·多模态