【pytorch】pytorch入门4:神经网络的卷积层


文章目录


前言

使用 B站小土堆课程的笔记


一、定义概念 + 缩写

  • 卷积层是神经网络中用于突出特征来进行分类任务的层。

二、性质

  • 卷积核例子:vgg16 model

三、代码

  • 添加库
py 复制代码
python代码块import os
import torch
import torchvision # torchvision 通常用于计算机视觉任务
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
  • 下载/加载数据集,加载数据
py 复制代码
# 这是一个类,用于下载和加载 CIFAR-10 数据集。CIFAR-10 是一个常用的小型图像数据集,用于训练机器学习和计算机视觉算法。它包含10个类别,每个类别有6000张32x32的彩色图像,总共有60000张图像。
# transform=torchvision.transforms.ToTensor() 转换格式
dataset = torchvision.datasets.CIFAR10("../data", train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)

# load data
dataloader = DataLoader(dataset, batch_size=64)
  • 定义类,搭建简单神经网络
py 复制代码
# 搭建简单 NN
class Tudui(nn.Module):
    def __init__(self):

        # 继承
        super(Tudui, self).__init__()

        # init
        self.conv1 = Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=0)

    # 卷积层
    def forward(self, x):
        x = self.conv1(x) # conv
        return x
        
# create an example
tudui = Tudui()
  • 加载到 tensorboard
py 复制代码
# log writer, write to tensorboard
writer = SummaryWriter("../logs")
  • 进行卷积
py 复制代码
# init counter
step = 0

# 循环进行卷积操作
for data in dataloader:
    imgs, targets = data
    output = tudui(imgs) # def a output
    print(imgs.shape)
    print(output.shape)
    # torch.Size([64, 3, 32, 32])

    # add img to tensorboard
    writer.add_images("input", imgs, step)
    # torch.Size([64, 6, 30, 30])  -> [xxx, 3, 30, 30]

    output = torch.reshape(output, (-1, 3, 30, 30))
    writer.add_images("output", output, step)

    # counter
    step = step + 1
  • 直接在 py 中加载 tensorboard,端口=6006;关闭 writer
py 复制代码
# open tensorboard
os.system('tensorboard --logdir=logs --port=6006')
# tensorboard --logdir="D:\Libraries\projects\python\001 learningTest and small task\a005_pytorch\a002_lesson_src\logs" --port=6006

writer.close()

总结


参考文献

1

相关推荐
就决定是你啦!1 小时前
机器学习 第一章 绪论
人工智能·深度学习·机器学习
有个人神神叨叨3 小时前
OpenAI发布的《Addendum to GPT-4o System Card: Native image generation》文件的详尽笔记
人工智能·笔记
林九生3 小时前
【Python】Browser-Use:让 AI 替你掌控浏览器,开启智能自动化新时代!
人工智能·python·自动化
liuyunshengsir4 小时前
AI Agent 实战:搭建个人在线旅游助手
人工智能·旅游
Shawn_Shawn4 小时前
大模型微调介绍
人工智能
TiAmo zhang4 小时前
DeepSeek-R1 模型现已在亚马逊云科技上提供
人工智能·云计算·aws
liruiqiang054 小时前
循环神经网络 - 简单循环网络
人工智能·rnn·深度学习·神经网络·机器学习
Erica_zhase5 小时前
GPT-4o推出的原生图像生成功能升级后有点东西!
人工智能
青花瓷5 小时前
智谱大模型(ChatGLM3)PyCharm的调试指南
人工智能·python·大模型·智谱大模型
说私域5 小时前
基于开源AI大模型与S2B2C模式的线下服务型门店增长策略研究——以AI智能名片与小程序源码技术为核心
大数据·人工智能·小程序·开源