【pytorch】pytorch入门4:神经网络的卷积层


文章目录


前言

使用 B站小土堆课程的笔记


一、定义概念 + 缩写

  • 卷积层是神经网络中用于突出特征来进行分类任务的层。

二、性质

  • 卷积核例子:vgg16 model

三、代码

  • 添加库
py 复制代码
python代码块import os
import torch
import torchvision # torchvision 通常用于计算机视觉任务
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
  • 下载/加载数据集,加载数据
py 复制代码
# 这是一个类,用于下载和加载 CIFAR-10 数据集。CIFAR-10 是一个常用的小型图像数据集,用于训练机器学习和计算机视觉算法。它包含10个类别,每个类别有6000张32x32的彩色图像,总共有60000张图像。
# transform=torchvision.transforms.ToTensor() 转换格式
dataset = torchvision.datasets.CIFAR10("../data", train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)

# load data
dataloader = DataLoader(dataset, batch_size=64)
  • 定义类,搭建简单神经网络
py 复制代码
# 搭建简单 NN
class Tudui(nn.Module):
    def __init__(self):

        # 继承
        super(Tudui, self).__init__()

        # init
        self.conv1 = Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=0)

    # 卷积层
    def forward(self, x):
        x = self.conv1(x) # conv
        return x
        
# create an example
tudui = Tudui()
  • 加载到 tensorboard
py 复制代码
# log writer, write to tensorboard
writer = SummaryWriter("../logs")
  • 进行卷积
py 复制代码
# init counter
step = 0

# 循环进行卷积操作
for data in dataloader:
    imgs, targets = data
    output = tudui(imgs) # def a output
    print(imgs.shape)
    print(output.shape)
    # torch.Size([64, 3, 32, 32])

    # add img to tensorboard
    writer.add_images("input", imgs, step)
    # torch.Size([64, 6, 30, 30])  -> [xxx, 3, 30, 30]

    output = torch.reshape(output, (-1, 3, 30, 30))
    writer.add_images("output", output, step)

    # counter
    step = step + 1
  • 直接在 py 中加载 tensorboard,端口=6006;关闭 writer
py 复制代码
# open tensorboard
os.system('tensorboard --logdir=logs --port=6006')
# tensorboard --logdir="D:\Libraries\projects\python\001 learningTest and small task\a005_pytorch\a002_lesson_src\logs" --port=6006

writer.close()

总结


参考文献

1

相关推荐
IT_陈寒31 分钟前
JavaScript性能优化:10个V8引擎隐藏技巧让你的代码快30%
前端·人工智能·后端
Dev7z1 小时前
基于图像处理技术的智能答题卡识别与评分系统设计与实现
图像处理·人工智能
掘金安东尼1 小时前
本地模型 + 云端模型的 Hybrid Inference 架构设计:下一代智能系统的底层范式
人工智能
强盛小灵通专卖员1 小时前
煤矿传送带异物检测:深度学习引领煤矿安全新革命!
人工智能·目标检测·sci·研究生·煤矿安全·延毕·传送带
王哈哈^_^1 小时前
Ubuntu系统CUDA完整安装指南
linux·运维·服务器·pytorch·ubuntu
学历真的很重要1 小时前
PyTorch 零基础入门:从张量到 GPU 加速完全指南
人工智能·pytorch·后端·深度学习·语言模型·职场和发展
mit6.8241 小时前
[Column] Perplexity 如何构建 AI 版 Google | 模型无关架构 | Vespa AI检索
人工智能
xier_ran1 小时前
深度学习:梯度检验(Gradient Checking)
人工智能·深度学习·梯度检验
尼古拉斯·纯情暖男·天真·阿玮1 小时前
基于卷积神经网络的手写数字识别
人工智能·神经网络·cnn
2401_841495642 小时前
MoE算法深度解析:从理论架构到行业实践
人工智能·深度学习·机器学习·自然语言处理·大语言模型·moe·混合专家模型