【pytorch】pytorch入门4:神经网络的卷积层


文章目录


前言

使用 B站小土堆课程的笔记


一、定义概念 + 缩写

  • 卷积层是神经网络中用于突出特征来进行分类任务的层。

二、性质

  • 卷积核例子:vgg16 model

三、代码

  • 添加库
py 复制代码
python代码块import os
import torch
import torchvision # torchvision 通常用于计算机视觉任务
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
  • 下载/加载数据集,加载数据
py 复制代码
# 这是一个类,用于下载和加载 CIFAR-10 数据集。CIFAR-10 是一个常用的小型图像数据集,用于训练机器学习和计算机视觉算法。它包含10个类别,每个类别有6000张32x32的彩色图像,总共有60000张图像。
# transform=torchvision.transforms.ToTensor() 转换格式
dataset = torchvision.datasets.CIFAR10("../data", train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)

# load data
dataloader = DataLoader(dataset, batch_size=64)
  • 定义类,搭建简单神经网络
py 复制代码
# 搭建简单 NN
class Tudui(nn.Module):
    def __init__(self):

        # 继承
        super(Tudui, self).__init__()

        # init
        self.conv1 = Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=0)

    # 卷积层
    def forward(self, x):
        x = self.conv1(x) # conv
        return x
        
# create an example
tudui = Tudui()
  • 加载到 tensorboard
py 复制代码
# log writer, write to tensorboard
writer = SummaryWriter("../logs")
  • 进行卷积
py 复制代码
# init counter
step = 0

# 循环进行卷积操作
for data in dataloader:
    imgs, targets = data
    output = tudui(imgs) # def a output
    print(imgs.shape)
    print(output.shape)
    # torch.Size([64, 3, 32, 32])

    # add img to tensorboard
    writer.add_images("input", imgs, step)
    # torch.Size([64, 6, 30, 30])  -> [xxx, 3, 30, 30]

    output = torch.reshape(output, (-1, 3, 30, 30))
    writer.add_images("output", output, step)

    # counter
    step = step + 1
  • 直接在 py 中加载 tensorboard,端口=6006;关闭 writer
py 复制代码
# open tensorboard
os.system('tensorboard --logdir=logs --port=6006')
# tensorboard --logdir="D:\Libraries\projects\python\001 learningTest and small task\a005_pytorch\a002_lesson_src\logs" --port=6006

writer.close()

总结


参考文献

1

相关推荐
jndingxin7 分钟前
OpenCV CUDA模块中矩阵操作------归一化与变换操作
人工智能·opencv
ZStack开发者社区12 分钟前
云轴科技ZStack官网上线Support AI,智能助手助力高效技术支持
人工智能·科技
每天都要写算法(努力版)14 分钟前
【神经网络与深度学习】通俗易懂的介绍非凸优化问题、梯度消失、梯度爆炸、模型的收敛、模型的发散
人工智能·深度学习·神经网络
Blossom.11816 分钟前
Web3.0:互联网的去中心化未来
人工智能·驱动开发·深度学习·web3·去中心化·区块链·交互
kyle~17 分钟前
计算机视觉---目标检测(Object Detecting)概览
人工智能·目标检测·计算机视觉
hao_wujing24 分钟前
YOLOv8在单目向下多车辆目标检测中的应用
人工智能·yolo·目标检测
王学政234 分钟前
LlamaIndex 第九篇 Indexing索引
人工智能·python
白熊1881 小时前
【计算机视觉】OpenCV实战项目:基于OpenCV的车牌识别系统深度解析
人工智能·opencv·计算机视觉
IT古董2 小时前
【漫话机器学习系列】261.工具变量(Instrumental Variables)
人工智能·机器学习
小王格子2 小时前
AI 编程革命:腾讯云 CodeBuddy 如何重塑开发效率?
人工智能·云计算·腾讯云·codebuddy·craft