目录
[两个多边形 贴图](#两个多边形 贴图)
两个多边形 贴图
python
import cv2
import numpy as np
from PIL import Image, ImageDraw
# 给矩形裁剪区域加上圆角
def add_round_corners(image, radius):
mask = Image.new('L', image.size, 0)
draw = ImageDraw.Draw(mask)
draw.rounded_rectangle((0, 0) + image.size, radius=radius, fill=255)
# 将裁剪后的图像添加alpha通道
result = image.copy()
result.putalpha(mask)
return result
# 裁剪旋转矩形
def crop_rotated_rectangle(image, rect_points):
# 获取矩形的宽高
rect_width = int(np.linalg.norm(rect_points[0] - rect_points[1]))
rect_height = int(np.linalg.norm(rect_points[1] - rect_points[2]))
# 定义矩形的目标位置
src_pts = rect_points.astype("float32")
dst_pts = np.array([[0, rect_height - 1], [0, 0], [rect_width - 1, 0], [rect_width - 1, rect_height - 1]], dtype="float32")
# 计算透视变换矩阵并应用变换
M = cv2.getPerspectiveTransform(src_pts, dst_pts)
cropped = cv2.warpPerspective(image, M, (rect_width, rect_height))
return cropped
# 将图像A中的旋转矩形裁剪圆角,并粘贴到图像B的旋转矩形中
def crop_and_paste_rounded_image(image_a, image_b, poly_a, poly_b, radius):
# 多边形A的顶点 (最小外接矩形顶点)
rect_points_a = np.array(poly_a)
# 多边形B的顶点 (最小外接矩形顶点)
rect_points_b = np.array(poly_b)
for point in rect_points_a:
cv2.circle(image_b, point, 5, (0, 0, 255), -1) # 画顶点
for point in rect_points_b:
cv2.circle(image_b, point, 5, (0, 255, 0), -1) # 画顶点
# 裁剪图像A的旋转矩形
cropped_a = crop_rotated_rectangle(image_a, rect_points_a)
# 将裁剪后的图像转换为Pillow格式,并加上圆角
cropped_a_pil = Image.fromarray(cv2.cvtColor(cropped_a, cv2.COLOR_BGR2RGBA))
rounded_a = add_round_corners(cropped_a_pil, radius)
# 将图像A的圆角部分转换为OpenCV图像
rounded_a_cv = cv2.cvtColor(np.array(rounded_a), cv2.COLOR_RGBA2BGRA)
# 获取图像B的旋转矩形的宽高
rect_width_b = int(np.linalg.norm(rect_points_b[0] - rect_points_b[1]))
rect_height_b = int(np.linalg.norm(rect_points_b[1] - rect_points_b[2]))
# 定义图像A的裁剪区域和图像B的目标区域的顶点
src_pts_a = np.array([[0, rect_height_b - 1], [0, 0], [rect_width_b - 1, 0], [rect_width_b - 1, rect_height_b - 1]], dtype="float32")
dst_pts_b = rect_points_b.astype("float32")
# 计算透视变换矩阵并应用
M_b = cv2.getPerspectiveTransform(src_pts_a, dst_pts_b)
transformed_a = cv2.warpPerspective(rounded_a_cv, M_b, (image_b.shape[1], image_b.shape[0]), None, cv2.INTER_LINEAR, borderMode=cv2.BORDER_TRANSPARENT)
# 将变换后的图像A粘贴到图像B
mask = transformed_a[:, :, 3] # alpha通道作为mask
mask_inv = cv2.bitwise_not(mask)
img_b_bg = cv2.bitwise_and(image_b, image_b, mask=mask_inv)
img_a_fg = cv2.bitwise_and(transformed_a, transformed_a, mask=mask)
result = cv2.add(img_b_bg, img_a_fg[:, :, :3])
return result
# 示例使用
image_a_path = r"000.jpg"
image_b_path = r"007.jpg"# 图像B的路径
# 给定的两个多边形顶点 (最小外接矩形)
poly_a = [[590, 268], [581, 331], [712, 365], [744, 263]]
poly_b = [[760, 267], [748, 359], [929, 409], [954, 273]]
radius = 20 # 圆角半径
image_a = cv2.imread(image_a_path)
image_b = cv2.imread(image_b_path)
# 执行裁剪并粘贴操作
result=crop_and_paste_rounded_image(image_a, image_b, poly_a, poly_b, radius)
cv2.imshow('result', result)
cv2.waitKey(0)
两个多边形粘贴
python
import math
import random
import cv2
import numpy as np
from PIL import Image, ImageDraw
def rotate_image(image, angle):
(h, w) = image.shape[:2]
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, angle, 1.0)
rotated = cv2.warpAffine(image, M, (w, h), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=(0, 0, 0))
return rotated
def mask_polygon(image, poly_a):
debug=False
box1_x, box1_y, box1_w, box1_h = cv2.boundingRect(np.asarray(poly_a))
mask = np.zeros(image.shape[:2], dtype=np.uint8)
# 填充多边形区域为白色 (255),其余区域为黑色 (0)
cv2.fillPoly(mask, [np.asarray(poly_a)], 255)
masked_image = np.zeros_like(image)
masked_image[mask == 255] = image[mask == 255]
result = masked_image[box1_y:box1_y+box1_h, box1_x:box1_x+box1_w]
if debug:
cv2.imshow("debug",result)
cv2.waitKey(0)
angle = random.uniform(-15, 15)
result_2 = rotate_image(result, angle)
return result_2
def clip_polygon_to_image(poly_a, image_shape):
h, w = image_shape[:2] # 获取图像的宽度和高度
clipped_polygon = []
for point in poly_a:
# 限制x和y坐标在图像范围内
x = min(max(point[0], 0), w - 1)
y = min(max(point[1], 0), h - 1)
clipped_polygon.append([x, y])
return clipped_polygon
# 顺时针排序多边形顶点
def sort_polygon_clockwise(poly_a):
# 计算多边形的中心点
center_x = sum([point[0] for point in poly_a]) / len(poly_a)
center_y = sum([point[1] for point in poly_a]) / len(poly_a)
# 计算每个点相对于中心点的角度,并按顺时针顺序排序
def angle_from_center(point):
return math.atan2(point[1] - center_y, point[0] - center_x)
# 根据角度进行排序,顺时针排列
poly_a_sorted = sorted(poly_a, key=angle_from_center, reverse=True)
return poly_a_sorted
def crop_and_paste_rounded_image(image_a, image_b, poly_a, poly_b):
poly_a = sort_polygon_clockwise(np.asarray(poly_a))
# 裁剪多边形到图像范围内
poly_a = clip_polygon_to_image(poly_a, image_a.shape)
poly_b = sort_polygon_clockwise(np.asarray(poly_b))
# 裁剪多边形到图像范围内
poly_b = clip_polygon_to_image(poly_b, image_a.shape)
box1_x, box1_y, box1_w, box1_h = cv2.boundingRect(np.asarray(poly_a))
# 裁剪图像A的旋转矩形
# cropped_a = image_a[box1_y:box1_y + box1_h, box1_x:box1_x + box1_w].copy()
rounded_a_cv = mask_polygon(image_a, poly_a)
# 定义图像A的裁剪区域的四个顶点 (src_pts_a) 和目标区域 (dst_pts_b) 的顶点
box2_x, box2_y, box2_w, box2_h = cv2.boundingRect(np.asarray(poly_b))
scale=min(box2_w/box1_w, box2_h/box1_h)
img_new = cv2.resize(rounded_a_cv, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA)
image_b[box2_y:box2_y+img_new.shape[0], box2_x:box2_x+img_new.shape[1]] = img_new
return image_b
# 示例使用
image_a_path = r"000.jpg"
image_b_path = r"007.jpg" # 图像B的路径
poly_a = [[590, 268], [581, 331], [712, 365], [744, 263]] # 图像A的最小外接矩形顶点
poly_b = [[760, 267], [748, 359], [929, 409], [954, 273]] # 图像B的最小外接矩形顶点
while True:
image_a = cv2.imread(image_a_path)
image_b = cv2.imread(image_b_path)
# 执行裁剪并粘贴操作
result = crop_and_paste_rounded_image(image_a, image_b, poly_a, poly_b)
cv2.imshow('image_a', image_a)
cv2.imshow('result', result)
cv2.waitKey(0)