OCR识别系统 YOLOv8 +Paddle 方案落地

YOLOv8 + PaddleOCR 技术方案落地

  • Yolov8相关文档
    • [Step 1 证件模型的训练](#Step 1 证件模型的训练)
    • [Step 2 Yolov8进行图片推理](#Step 2 Yolov8进行图片推理)
    • [Step 3 PaddleOCR进行识别](#Step 3 PaddleOCR进行识别)
    • [Step 4 整合Yolov8 + PaddleOCR 进行OCR](#Step 4 整合Yolov8 + PaddleOCR 进行OCR)

Yolov8相关文档

《yolov8 官方网站》
《Yolov8 保姆级别安装》

Ultralytics YOLOv8 是一款尖端的、最先进的 (SOTA) 模型,它以之前 YOLO 版本的成功为基础,并引入了新功能和改进,以进一步提高性能和灵活性。YOLOv8 旨在快速、准确且易于使用,使其成为各种对象检测和跟踪、实例分割、图像分类和姿势估计任务的绝佳选择
目前市面的OCR功能都已经比较完善了,Paddle也很出众,不过OCR出来后相关字段都是错乱,你通过正则表达式获取也不能满足特殊场景,那么就需要特别的位置检测。yolov家族就是做这个事情的!!,通过图片相关位置截取图片在进行OCR

Step 1 证件模型的训练

1、选取身份证标注 (300张样本,200张测试样本)

2、使用标注软件进行处理数据集(这里我用的是 makesense)

3、yolov8 进行训练模型 (这里可以参考《Yolov8 保姆级别安装》文章 )

python 复制代码
yolo detect train model=yolov8n.pt data=idCard.yaml epochs=10 imgsz=640

样图:

Step 2 Yolov8进行图片推理

python 复制代码
yolo predict model=best.pt  source=image_test imgsz=640 

检测后效果:

Step 3 PaddleOCR进行识别

python 复制代码
paddleocr --image_dir ./imges/test.jpg --use_angle_cls true --use_gpu false 

\[\[28.0, 37.0\], \[302.0, 39.0\], \[302.0, 72.0\], \[27.0, 70.0\]\], ('姓名 xxxxxxx', 0.9658738374710083)

...

到这里相关操作都能正常运行,那么你的虚拟环境就好了。

Step 4 整合Yolov8 + PaddleOCR 进行OCR

1、通过Flask整合,通过http接口进行交互识别

python 复制代码
"""
三大核心包
"""
from flask import Flask, request
from ultralytics import YOLO
from paddleocr import PaddleOCR

//yolov 推理
model_idCard = YOLO('best_idCard.pt')
results = model_idCard.predict(img, device='cpu', stream=True)
....

//获取yolov推理后的切片图进行ocr
ocr = PaddleOCR(lang='ch', use_angle_cls=True, enable_mkldnn=True, cpu_threads=8, ocr_version='PP-OCRv4')
result = ocr.ocr(img, cls=True)



@app.route('/idCardOcr', methods=['POST'])
def idCardOcrRequest():
# f = request.files['file']
 json = request.json
 imagePath = 'temp/' + json['fileName']
 # imagePath = 'D:/work_project/useDeviceCloud/temp/' + json['fileName']
 return idCardOcr(imagePath)

yolov8推理出来的切图

效果:

效果还是比较可以的,不过低配置的机器可能有点限制。paddle要求比较高后续看看在接入其他的ocr通用版本来替换,让更多的机器能跑起来

看↓↓↓方格或搜索: 码猿趣事,回复关键字:yolov8+OCR持续更新中~。

相关推荐
学技术的大胜嗷9 小时前
如何裁剪YOLOv8m的大目标检测头并验证其结构
深度学习·yolo·目标检测·计算机视觉
@解忧杂货铺12 小时前
【百度AI】Postman调用OCR服务-解决官方教程请求失败问题
ocr
远上寒山12 小时前
DeepSeek-OCR 论文精读与实践:用“光学上下文压缩”把长文本变成图片,再由 VLM 高效还原
ocr·vllm·文档解析·deepseek·deepseek-ocr·视觉-文本压缩
城南皮卡丘18 小时前
【源码+数据集+训练教程】基于YOLOv8+Flask+Layui的智能垃圾分类检测系统
yolo·flask·layui·垃圾分类
翔云 OCR API19 小时前
身份证三要素实名核验API:基于OCR与可信身份认证的技术解析
ocr
Sunhen_Qiletian21 小时前
高性能人工智能目标检测开山篇----YOLO v1算法详解(上篇)
人工智能·深度学习·yolo·目标检测·计算机视觉·目标跟踪
hans汉斯21 小时前
基于机器学习的商业银行信贷风险评估系统构建与实证研究
大数据·人工智能·爬虫·算法·yolo·机器学习·支持向量机
AI妈妈手把手2 天前
YOLO V2全面解析:更快、更准、更强大的目标检测算法
人工智能·算法·yolo·目标检测·计算机视觉·yolo v2
B站计算机毕业设计之家2 天前
计算机视觉:基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的零售柜商品检测识别系统(Python+PySide6界面+训练代码)(源码+文档)✅
人工智能·深度学习·opencv·yolo·计算机视觉·零售·1024程序员节
过往入尘土2 天前
YOLOv5:实时目标检测的现代化实践与深度解析
人工智能·yolo·目标检测