OCR识别系统 YOLOv8 +Paddle 方案落地

YOLOv8 + PaddleOCR 技术方案落地

  • Yolov8相关文档
    • [Step 1 证件模型的训练](#Step 1 证件模型的训练)
    • [Step 2 Yolov8进行图片推理](#Step 2 Yolov8进行图片推理)
    • [Step 3 PaddleOCR进行识别](#Step 3 PaddleOCR进行识别)
    • [Step 4 整合Yolov8 + PaddleOCR 进行OCR](#Step 4 整合Yolov8 + PaddleOCR 进行OCR)

Yolov8相关文档

《yolov8 官方网站》
《Yolov8 保姆级别安装》

Ultralytics YOLOv8 是一款尖端的、最先进的 (SOTA) 模型,它以之前 YOLO 版本的成功为基础,并引入了新功能和改进,以进一步提高性能和灵活性。YOLOv8 旨在快速、准确且易于使用,使其成为各种对象检测和跟踪、实例分割、图像分类和姿势估计任务的绝佳选择
目前市面的OCR功能都已经比较完善了,Paddle也很出众,不过OCR出来后相关字段都是错乱,你通过正则表达式获取也不能满足特殊场景,那么就需要特别的位置检测。yolov家族就是做这个事情的!!,通过图片相关位置截取图片在进行OCR

Step 1 证件模型的训练

1、选取身份证标注 (300张样本,200张测试样本)

2、使用标注软件进行处理数据集(这里我用的是 makesense)

3、yolov8 进行训练模型 (这里可以参考《Yolov8 保姆级别安装》文章 )

python 复制代码
yolo detect train model=yolov8n.pt data=idCard.yaml epochs=10 imgsz=640

样图:

Step 2 Yolov8进行图片推理

python 复制代码
yolo predict model=best.pt  source=image_test imgsz=640 

检测后效果:

Step 3 PaddleOCR进行识别

python 复制代码
paddleocr --image_dir ./imges/test.jpg --use_angle_cls true --use_gpu false 

\[\[28.0, 37.0\], \[302.0, 39.0\], \[302.0, 72.0\], \[27.0, 70.0\]\], ('姓名 xxxxxxx', 0.9658738374710083)

...

到这里相关操作都能正常运行,那么你的虚拟环境就好了。

Step 4 整合Yolov8 + PaddleOCR 进行OCR

1、通过Flask整合,通过http接口进行交互识别

python 复制代码
"""
三大核心包
"""
from flask import Flask, request
from ultralytics import YOLO
from paddleocr import PaddleOCR

//yolov 推理
model_idCard = YOLO('best_idCard.pt')
results = model_idCard.predict(img, device='cpu', stream=True)
....

//获取yolov推理后的切片图进行ocr
ocr = PaddleOCR(lang='ch', use_angle_cls=True, enable_mkldnn=True, cpu_threads=8, ocr_version='PP-OCRv4')
result = ocr.ocr(img, cls=True)



@app.route('/idCardOcr', methods=['POST'])
def idCardOcrRequest():
# f = request.files['file']
 json = request.json
 imagePath = 'temp/' + json['fileName']
 # imagePath = 'D:/work_project/useDeviceCloud/temp/' + json['fileName']
 return idCardOcr(imagePath)

yolov8推理出来的切图

效果:

效果还是比较可以的,不过低配置的机器可能有点限制。paddle要求比较高后续看看在接入其他的ocr通用版本来替换,让更多的机器能跑起来

看↓↓↓方格或搜索: 码猿趣事,回复关键字:yolov8+OCR持续更新中~。

相关推荐
飞翔的佩奇1 小时前
【完整源码+数据集+部署教程】骰子点数识别图像实例分割系统源码和数据集:改进yolo11-DCNV2
python·yolo·计算机视觉·数据集·yolo11·骰子点数识别图像实例分割
sky丶Mamba2 小时前
OCR与多模态大模型:从“看见”文字到“读懂”世界的技术革命
ocr·多模态大模型
HUIMU_1 天前
DAY20-新世纪DL(DeepLearning/深度学习)战士:终(目标检测/YOLO)3
深度学习·yolo·目标检测·滑动窗口·非极大值抑制·交并比·bouding box
max5006001 天前
YOLOv8主干网络替换为UniConvNet的详细指南
运维·开发语言·人工智能·python·算法·yolo
Python图像识别1 天前
57_基于深度学习的农作物虫害检测识别系统(yolo11、yolov8、yolov5+UI界面+Python项目源码+模型+标注好的数据集)
python·深度学习·yolo
TextIn智能文档云平台2 天前
AI文档产品与传统OCR软件的根本区别是什么?
人工智能·ocr
a1111111111ss2 天前
基于 YOLOv11n 的无人机航拍小目标检测算法学习
yolo·目标检测·无人机
doris6102 天前
固定资产管理系统核心功能拆解:批量导入、OCR 识别有多高效?
ocr·资产管理·固定资产管理系统
猫头虎2 天前
猫头虎AI分享:无需OCR,基于ColQwen2、Qwen2.5和Weaviate对PDF进行多模态RAG的解决方案
microsoft·ai·pdf·aigc·ocr·ai编程·ai-native
Coovally AI模型快速验证2 天前
轻量级注意力模型HOTSPOT-YOLO:无人机光伏热异常检测新SOTA,mAP高达90.8%
人工智能·学习·yolo·计算机视觉·目标跟踪·无人机