Transformers 引擎,vLLM 引擎,Llama.cpp 引擎,SGLang 引擎,MLX 引擎

1. Transformers 引擎

  • 开发者:Hugging Face
  • 主要功能:Transformers 库提供了对多种预训练语言模型的支持,包括 BERT、GPT、T5 等。用户可以轻松加载模型进行微调或推理。
  • 特性
    • 多任务支持:支持文本生成、文本分类、问答、翻译等多种自然语言处理任务。
    • 简单易用:API 设计友好,用户可以用几行代码完成模型的加载、推理和训练。
    • 社区支持:拥有丰富的文档和活跃的社区,提供大量的示例和教程。

2. vLLM 引擎

  • 目标:高效推理大型语言模型。
  • 特性
    • 混合精度支持:使用混合精度技术减少内存占用,提升计算速度。
    • 张量并行:通过张量并行方法来优化模型的运行,使其能在多 GPU 环境中高效运作。
    • 灵活性:适用于多种语言模型,可以与现有的 Transformers 库兼容使用。

3. Llama.cpp 引擎

  • 背景:Llama.cpp 是 LLaMA 模型的 C++ 实现,目标是提供高效的推理能力。
  • 特性
    • 高性能:通过优化算法和内存管理,提供更快的推理速度。
    • 本地部署:适合需要在本地机器上快速执行模型推理的场景。
    • 轻量级:相比其他实现,代码更加简洁,降低了系统资源的需求。

4. SGLang 引擎

  • 目标:提供一个图形化编程环境,以简化机器学习模型的构建。
  • 特性
    • 图形化界面:允许用户通过拖拽组件来构建程序,适合不熟悉代码的用户。
    • 模块化设计:支持将复杂任务拆分成可重复使用的模块,增强代码的可维护性。
    • 教育用途:非常适合教育领域,帮助学生理解编程和机器学习的基本概念。

5. MLX 引擎

  • 目标:为机器学习提供扩展性和灵活性。
  • 特性
    • 多模型支持:支持多种类型的机器学习模型(如深度学习、决策树等)。
    • 高效训练:通过优化算法提升训练速度,适合实时和大规模数据处理。
    • 集成工具:提供一系列工具,方便开发者进行数据处理、模型评估和结果可视化。
相关推荐
kimi-2221 天前
LLaMA Factory: 一站式大模型高效微调平台
llama
码界奇点3 天前
基于Wails框架的Ollama模型桌面管理系统设计与实现
go·毕业设计·llama·源代码管理
独隅3 天前
Ollama for macOS 完全指南:零配置本地运行 Llama、DeepSeek 等大模型,私享安全高效的 AI 能力
安全·macos·llama
skywalk81634 天前
使用llama.cpp和ollama推理LFM2.5-1.2B模型
llama·ollama·lfm2.5-1.2b
GatiArt雷4 天前
基于LLaMA 3微调的行业知识库问答系统搭建与实践
llama
wangqiaowq4 天前
llama.cpp + llama-server 的安装部署验证
运维·服务器·llama
upp4 天前
pyqt5 5.15.9和llama-cpp-python 0.3.16 初始化大模型报错解决
python·qt·llama
chem41117 天前
玩客云 边缘AI模型 本地搭建部署 llama.cpp qwen
linux·人工智能·llama
skywalk81638 天前
2026.1月llama.cpp的最新进展:在AIStudio推理Llama-3-8B-Instruct-Coder.Q6_K.gguf模型
llama·lfm2.5-1.2b
【赫兹威客】浩哥10 天前
【赫兹威客】Ollama安装教程
llama