【深度学习 PyTorch】PyTorch DataLoader 使用指南:图片与文本加载

在深度学习中,PyTorch 的 DataLoader 是一个高效的数据加载工具。本文将重点介绍如何使用 DataLoader 加载图片和文本数据。

1. 基本概念

DataLoader 依赖于 Dataset 类。我们需要自定义 Dataset,以便加载我们的图片和文本数据,并将其传递给 DataLoader

2. 图片加载

创建自定义 Dataset

python 复制代码
import torch
from torchvision import datasets, transforms

# 定义转换
transform = transforms.Compose([
    transforms.Resize((128, 128)),
    transforms.ToTensor()
])

# 创建 Dataset
image_dataset = datasets.ImageFolder(root='path/to/images', transform=transform)

初始化 DataLoader

python 复制代码
from torch.utils.data import DataLoader

# 创建 DataLoader
image_loader = DataLoader(image_dataset, batch_size=32, shuffle=True, num_workers=4)
3. 文本加载

创建自定义 Dataset

使用 torchtext 来处理文本数据:

python 复制代码
from torchtext.data import Field, TabularDataset, BucketIterator

# 定义字段
TEXT = Field(tokenize='spacy')
LABEL = Field(dtype=torch.float)

# 创建 Dataset
text_dataset = TabularDataset(path='data.csv', format='csv', fields=[('text', TEXT), ('label', LABEL)])

初始化 DataLoader

python 复制代码
text_loader = BucketIterator(text_dataset, batch_size=32, shuffle=True)
4. 迭代加载数据

图片数据

python 复制代码
for images, labels in image_loader:
    # 模型训练代码
    pass

文本数据

python 复制代码
for batch in text_loader:
    text, labels = batch.text, batch.label
    # 模型训练代码
    pass
5. 总结

DataLoader 极大地简化了图片和文本数据的加载过程。通过调整批量大小和使用多线程,可以有效提高性能。深入了解这些功能,将帮助你在深度学习项目中实现更优的数据管理。

相关推荐
陈天伟教授4 分钟前
人工智能应用- 材料微观:01. 微观结构的重要性
人工智能·神经网络·算法·机器学习·推荐算法
聊聊科技5 分钟前
用清唱歌词音频来创作,原创音乐人通过AI编曲软件快速制作歌曲的编曲伴奏
人工智能
盲盒Q5 分钟前
《内存之茧》
数据结构·人工智能·ruby
狮子座明仔8 分钟前
REDSearcher:如何用30B参数的小模型,在深度搜索上击败GPT-o3和Gemini?
人工智能·gpt·深度学习·microsoft·语言模型·自然语言处理
沪漂阿龙11 分钟前
从Chatbot到Agent:核心能力、工作原理与实战解析
人工智能
石去皿18 分钟前
Token及模型参数准备篇——预训练数据去重、SFT数据量估算与正则化策略全解析
人工智能
聊聊科技31 分钟前
清唱一遍歌词即可制作完整歌曲的编曲伴奏,原创音乐人借助AI编曲软件轻松出歌
人工智能
大模型任我行35 分钟前
华为:CLI任务自动生成新范式
人工智能·语言模型·自然语言处理·论文笔记
追风少年ii37 分钟前
顶刊分享--由细菌-癌细胞相互作用决定的差异性肿瘤免疫
人工智能·算法·数据分析·空间·单细胞
RoyLin39 分钟前
10美元硬件中可运行的隐私 LLM 推理引擎
人工智能·rust·agent