【深度学习 PyTorch】PyTorch DataLoader 使用指南:图片与文本加载

在深度学习中,PyTorch 的 DataLoader 是一个高效的数据加载工具。本文将重点介绍如何使用 DataLoader 加载图片和文本数据。

1. 基本概念

DataLoader 依赖于 Dataset 类。我们需要自定义 Dataset,以便加载我们的图片和文本数据,并将其传递给 DataLoader

2. 图片加载

创建自定义 Dataset

python 复制代码
import torch
from torchvision import datasets, transforms

# 定义转换
transform = transforms.Compose([
    transforms.Resize((128, 128)),
    transforms.ToTensor()
])

# 创建 Dataset
image_dataset = datasets.ImageFolder(root='path/to/images', transform=transform)

初始化 DataLoader

python 复制代码
from torch.utils.data import DataLoader

# 创建 DataLoader
image_loader = DataLoader(image_dataset, batch_size=32, shuffle=True, num_workers=4)
3. 文本加载

创建自定义 Dataset

使用 torchtext 来处理文本数据:

python 复制代码
from torchtext.data import Field, TabularDataset, BucketIterator

# 定义字段
TEXT = Field(tokenize='spacy')
LABEL = Field(dtype=torch.float)

# 创建 Dataset
text_dataset = TabularDataset(path='data.csv', format='csv', fields=[('text', TEXT), ('label', LABEL)])

初始化 DataLoader

python 复制代码
text_loader = BucketIterator(text_dataset, batch_size=32, shuffle=True)
4. 迭代加载数据

图片数据

python 复制代码
for images, labels in image_loader:
    # 模型训练代码
    pass

文本数据

python 复制代码
for batch in text_loader:
    text, labels = batch.text, batch.label
    # 模型训练代码
    pass
5. 总结

DataLoader 极大地简化了图片和文本数据的加载过程。通过调整批量大小和使用多线程,可以有效提高性能。深入了解这些功能,将帮助你在深度学习项目中实现更优的数据管理。

相关推荐
黎燃19 分钟前
AI驱动的供应链管理:需求预测实战指南
人工智能
天波信息技术分享27 分钟前
AI云电脑盒子技术分析——从“盒子”到“算力云边缘节点”的跃迁
人工智能·电脑
CoderJia程序员甲40 分钟前
GitHub 热榜项目 - 日榜(2025-08-16)
人工智能·ai·开源·github
KirkLin41 分钟前
Kirk:练习时长两年半的AI Coding经验
人工智能·程序员·全栈
mit6.8241 小时前
[1Prompt1Story] 注意力机制增强 IPCA | 去噪神经网络 UNet | U型架构分步去噪
人工智能·深度学习·神经网络
挽淚1 小时前
(小白向)什么是Prompt,RAG,Agent,Function Calling和MCP ?
人工智能·程序员
Jina AI1 小时前
回归C++: 在GGUF上构建高效的向量模型
人工智能·算法·机器学习·数据挖掘·回归
Coovally AI模型快速验证1 小时前
YOLO、DarkNet和深度学习如何让自动驾驶看得清?
深度学习·算法·yolo·cnn·自动驾驶·transformer·无人机
科大饭桶2 小时前
昇腾AI自学Day2-- 深度学习基础工具与数学
人工智能·pytorch·python·深度学习·numpy
什么都想学的阿超2 小时前
【大语言模型 02】多头注意力深度剖析:为什么需要多个头
人工智能·语言模型·自然语言处理