【深度学习 PyTorch】PyTorch DataLoader 使用指南:图片与文本加载

在深度学习中,PyTorch 的 DataLoader 是一个高效的数据加载工具。本文将重点介绍如何使用 DataLoader 加载图片和文本数据。

1. 基本概念

DataLoader 依赖于 Dataset 类。我们需要自定义 Dataset,以便加载我们的图片和文本数据,并将其传递给 DataLoader

2. 图片加载

创建自定义 Dataset

python 复制代码
import torch
from torchvision import datasets, transforms

# 定义转换
transform = transforms.Compose([
    transforms.Resize((128, 128)),
    transforms.ToTensor()
])

# 创建 Dataset
image_dataset = datasets.ImageFolder(root='path/to/images', transform=transform)

初始化 DataLoader

python 复制代码
from torch.utils.data import DataLoader

# 创建 DataLoader
image_loader = DataLoader(image_dataset, batch_size=32, shuffle=True, num_workers=4)
3. 文本加载

创建自定义 Dataset

使用 torchtext 来处理文本数据:

python 复制代码
from torchtext.data import Field, TabularDataset, BucketIterator

# 定义字段
TEXT = Field(tokenize='spacy')
LABEL = Field(dtype=torch.float)

# 创建 Dataset
text_dataset = TabularDataset(path='data.csv', format='csv', fields=[('text', TEXT), ('label', LABEL)])

初始化 DataLoader

python 复制代码
text_loader = BucketIterator(text_dataset, batch_size=32, shuffle=True)
4. 迭代加载数据

图片数据

python 复制代码
for images, labels in image_loader:
    # 模型训练代码
    pass

文本数据

python 复制代码
for batch in text_loader:
    text, labels = batch.text, batch.label
    # 模型训练代码
    pass
5. 总结

DataLoader 极大地简化了图片和文本数据的加载过程。通过调整批量大小和使用多线程,可以有效提高性能。深入了解这些功能,将帮助你在深度学习项目中实现更优的数据管理。

相关推荐
张拭心3 小时前
Cursor 又偷偷更新,这个功能太实用:Visual Editor for Cursor Browser
前端·人工智能
吴佳浩4 小时前
大模型 MoE,你明白了么?
人工智能·llm
Blossom.1185 小时前
基于Embedding+图神经网络的开源软件供应链漏洞检测:从SBOM到自动修复的完整实践
人工智能·分布式·深度学习·神经网络·copilot·开源软件·embedding
t198751285 小时前
电力系统经典节点系统潮流计算MATLAB实现
人工智能·算法·matlab
万悉科技5 小时前
比 Profound 更适合中国企业的GEO产品
大数据·人工智能
mqiqe5 小时前
vLLM(vLLM.ai)生产环境部署大模型
人工智能·vllm
V1ncent Chen5 小时前
机器是如何“洞察“世界的?:深度学习
人工智能·深度学习
AI营销前沿5 小时前
中国AI营销专家深度解析:谁在定义AI营销的未来?
人工智能
前端大卫6 小时前
【重磅福利】学生认证可免费领取 Gemini 3 Pro 一年
前端·人工智能
汽车仪器仪表相关领域6 小时前
LambdaCAN:重构专业空燃比测量的数字化范式
大数据·人工智能·功能测试·安全·重构·汽车·压力测试