【深度学习 PyTorch】PyTorch DataLoader 使用指南:图片与文本加载

在深度学习中,PyTorch 的 DataLoader 是一个高效的数据加载工具。本文将重点介绍如何使用 DataLoader 加载图片和文本数据。

1. 基本概念

DataLoader 依赖于 Dataset 类。我们需要自定义 Dataset,以便加载我们的图片和文本数据,并将其传递给 DataLoader

2. 图片加载

创建自定义 Dataset

python 复制代码
import torch
from torchvision import datasets, transforms

# 定义转换
transform = transforms.Compose([
    transforms.Resize((128, 128)),
    transforms.ToTensor()
])

# 创建 Dataset
image_dataset = datasets.ImageFolder(root='path/to/images', transform=transform)

初始化 DataLoader

python 复制代码
from torch.utils.data import DataLoader

# 创建 DataLoader
image_loader = DataLoader(image_dataset, batch_size=32, shuffle=True, num_workers=4)
3. 文本加载

创建自定义 Dataset

使用 torchtext 来处理文本数据:

python 复制代码
from torchtext.data import Field, TabularDataset, BucketIterator

# 定义字段
TEXT = Field(tokenize='spacy')
LABEL = Field(dtype=torch.float)

# 创建 Dataset
text_dataset = TabularDataset(path='data.csv', format='csv', fields=[('text', TEXT), ('label', LABEL)])

初始化 DataLoader

python 复制代码
text_loader = BucketIterator(text_dataset, batch_size=32, shuffle=True)
4. 迭代加载数据

图片数据

python 复制代码
for images, labels in image_loader:
    # 模型训练代码
    pass

文本数据

python 复制代码
for batch in text_loader:
    text, labels = batch.text, batch.label
    # 模型训练代码
    pass
5. 总结

DataLoader 极大地简化了图片和文本数据的加载过程。通过调整批量大小和使用多线程,可以有效提高性能。深入了解这些功能,将帮助你在深度学习项目中实现更优的数据管理。

相关推荐
Aevget9 分钟前
界面组件Kendo UI for React 2025 Q3亮点 - AI功能全面提升
人工智能·react.js·ui·界面控件·kendo ui·ui开发
桜吹雪40 分钟前
LangChain.js/DeepAgents可观测性
javascript·人工智能
&&Citrus40 分钟前
【杂谈】SNNU公共计算平台:深度学习服务器配置与远程开发指北
服务器·人工智能·vscode·深度学习·snnu
乌恩大侠41 分钟前
Spark 机器上修改缓冲区大小
人工智能·usrp
STLearner43 分钟前
AI论文速读 | U-Cast:学习高维时间序列预测的层次结构
大数据·论文阅读·人工智能·深度学习·学习·机器学习·数据挖掘
数字化顾问1 小时前
(65页PPT)大型集团物料主数据管理系统建设规划方案(附下载方式)
大数据·运维·人工智能
新知图书2 小时前
FastGPT版本体系概览
人工智能·ai agent·智能体·大模型应用开发·大模型应用
老蒋新思维2 小时前
创客匠人 2025 全球创始人 IP+AI 万人高峰论坛:AI 赋能下知识变现与 IP 变现的实践沉淀与行业启示
大数据·人工智能·网络协议·tcp/ip·重构·创始人ip·创客匠人
黑客思维者2 小时前
LLM底层原理学习笔记:Adam优化器为何能征服巨型模型成为深度学习的“速度与稳定之王”
笔记·深度学习·学习·llm·adam优化器