车辆零部件检测和分割数据集-车体数据集-yolo格式-yolov5-yolov10可用

这些标签是用于实例分割任务中的类别,通常在汽车图像识别或自动驾驶技术中使用。以下是这些类别:

  • back_bumper - 后保险杠
  • back_glass - 后挡风玻璃
  • back_left_door - 后左车门
  • back_left_light - 后左灯
  • back_right_door - 后右车门
  • back_right_light - 后右灯
  • front_bumper - 前保险杠
  • front_glass - 前挡风玻璃
  • front_left_door - 前左车门
  • front_left_light - 前左灯
  • front_right_door - 前右车门
  • front_right_light - 前右灯
  • hood - 发动机盖
  • left_mirror - 左后视镜
  • right_mirror - 右后视镜
  • tailgate - 尾门(对于SUV、货车等车型)
  • trunk - 行李箱盖(对于轿车)
  • wheel - 车轮

这些术语是用来标识汽车不同部分的,在进行车辆部件检测和分割时会用到。

这段描述提供了一个数据集的概览,包括图像数量、数据集分割情况以及预处理和数据增强的步骤。下面是对这些信息的总结:

数据集总览

  • 总图像数:1450张

数据集分割

  • 训练集
    • 占比:98%
    • 图像数量:1425张
  • 验证集
    • 占比:2%
    • 图像数量:25张
  • 测试集
    • 占比:0%
    • 图像数量:0张

预处理

  • 自动定向:已应用
  • 调整大小:拉伸到640x640像素

数据增强

  • 每个训练样本输出:3个
  • 翻转:水平翻转
  • 旋转:在-15°到+15°之间
  • 剪切:±15°水平,±15°垂直
  • 灰度化:应用于25%的图像

这种设置有助于提高模型的泛化能力,通过数据增强来增加训练样本的多样性,并且保证了大多数图像用于训练,一小部分用于验证模型的表现。没有单独的测试集可能意味着验证集将被用来评估最终模型性能,或者计划在未来的某个阶段添加一个独立的测试集来进行最终评估。

如果您需要进一步的帮助,例如如何使用这个数据集进行训练或具体的技术细节,请告诉我。

相关推荐
春末的南方城市4 小时前
上交提出单图生成3D场景方法SceneGen:单图输入,多资源输出,3D 合成性能飙升的“秘密武器”!
人工智能·计算机视觉
天涯路s4 小时前
OpenCV 基本模块
人工智能·opencv·计算机视觉
张较瘦_4 小时前
计算机类毕业设计开题报告注意事项
课程设计
CV实验室5 小时前
NeurIPS 2025 | 北大等提出C²Prompt:解耦类内与类间知识,攻克FCL遗忘难题!
人工智能·计算机视觉·prompt·论文·cv
不枯石14 小时前
Matlab通过GUI实现点云的均值滤波(附最简版)
开发语言·图像处理·算法·计算机视觉·matlab·均值算法
不枯石14 小时前
Matlab通过GUI实现点云的双边(Bilateral)滤波(附最简版)
开发语言·图像处理·算法·计算机视觉·matlab
千宇宙航20 小时前
闲庭信步使用图像验证平台加速FPGA的开发:第三十课——车牌识别的FPGA实现(2)实现车牌定位
图像处理·计算机视觉·fpga开发·车牌识别
大叔_爱编程20 小时前
基于Hadoop的美妆产品网络评价的数据采集与分析-django+spider
大数据·hadoop·django·毕业设计·源码·课程设计·美妆产品
Q264336502321 小时前
【有源码】基于Hadoop+Spark的豆瓣电影数据分析与可视化系统-基于大数据的电影评分趋势分析与可视化系统
大数据·hadoop·python·数据分析·spark·毕业设计·课程设计
天涯路s21 小时前
OpenCV 特征检测与描述
人工智能·opencv·计算机视觉