车辆零部件检测和分割数据集-车体数据集-yolo格式-yolov5-yolov10可用

这些标签是用于实例分割任务中的类别,通常在汽车图像识别或自动驾驶技术中使用。以下是这些类别:

  • back_bumper - 后保险杠
  • back_glass - 后挡风玻璃
  • back_left_door - 后左车门
  • back_left_light - 后左灯
  • back_right_door - 后右车门
  • back_right_light - 后右灯
  • front_bumper - 前保险杠
  • front_glass - 前挡风玻璃
  • front_left_door - 前左车门
  • front_left_light - 前左灯
  • front_right_door - 前右车门
  • front_right_light - 前右灯
  • hood - 发动机盖
  • left_mirror - 左后视镜
  • right_mirror - 右后视镜
  • tailgate - 尾门(对于SUV、货车等车型)
  • trunk - 行李箱盖(对于轿车)
  • wheel - 车轮

这些术语是用来标识汽车不同部分的,在进行车辆部件检测和分割时会用到。

这段描述提供了一个数据集的概览,包括图像数量、数据集分割情况以及预处理和数据增强的步骤。下面是对这些信息的总结:

数据集总览

  • 总图像数:1450张

数据集分割

  • 训练集
    • 占比:98%
    • 图像数量:1425张
  • 验证集
    • 占比:2%
    • 图像数量:25张
  • 测试集
    • 占比:0%
    • 图像数量:0张

预处理

  • 自动定向:已应用
  • 调整大小:拉伸到640x640像素

数据增强

  • 每个训练样本输出:3个
  • 翻转:水平翻转
  • 旋转:在-15°到+15°之间
  • 剪切:±15°水平,±15°垂直
  • 灰度化:应用于25%的图像

这种设置有助于提高模型的泛化能力,通过数据增强来增加训练样本的多样性,并且保证了大多数图像用于训练,一小部分用于验证模型的表现。没有单独的测试集可能意味着验证集将被用来评估最终模型性能,或者计划在未来的某个阶段添加一个独立的测试集来进行最终评估。

如果您需要进一步的帮助,例如如何使用这个数据集进行训练或具体的技术细节,请告诉我。

相关推荐
liwulin050644 分钟前
【PYTHON-YOLOV8N】关于YOLO的推理训练图片的尺寸
开发语言·python·yolo
another heaven1 小时前
【深度学习 YOLO官方模型全解析】
人工智能·深度学习·yolo
汝生淮南吾在北1 小时前
SpringBoot3+Vue3小区物业报修系统+微信小程序
微信小程序·小程序·vue·毕业设计·springboot·课程设计·毕设
roman_日积跬步-终至千里2 小时前
【计算机视觉(16)】语义理解-训练神经网络1_激活_预处理_初始化_BN
人工智能·神经网络·计算机视觉
一个没有感情的程序猿3 小时前
前端实现人体骨架检测与姿态对比:基于 MediaPipe 的完整方案
机器学习·计算机视觉·前端框架·开源
ccLianLian4 小时前
计算机视觉·LaVG
人工智能·计算机视觉
CoovallyAIHub5 小时前
从“模仿”到“进化”!华科&小米开源MindDrive:在线强化学习重塑「语言-动作」闭环驾驶
深度学习·算法·计算机视觉
梦梦c5 小时前
检查数据集信息
人工智能·计算机视觉
OpenBayes5 小时前
Open-AutoGLM 实现手机端自主操作;PhysDrive 数据集采集真实驾驶生理信号
人工智能·深度学习·机器学习·数据集·文档转换·图片生成·蛋白质设计
CoovallyAIHub5 小时前
SAM 真的开始「分割一切」,从图像到声音,Meta 开源 SAM Audio
深度学习·算法·计算机视觉