车辆零部件检测和分割数据集-车体数据集-yolo格式-yolov5-yolov10可用

这些标签是用于实例分割任务中的类别,通常在汽车图像识别或自动驾驶技术中使用。以下是这些类别:

  • back_bumper - 后保险杠
  • back_glass - 后挡风玻璃
  • back_left_door - 后左车门
  • back_left_light - 后左灯
  • back_right_door - 后右车门
  • back_right_light - 后右灯
  • front_bumper - 前保险杠
  • front_glass - 前挡风玻璃
  • front_left_door - 前左车门
  • front_left_light - 前左灯
  • front_right_door - 前右车门
  • front_right_light - 前右灯
  • hood - 发动机盖
  • left_mirror - 左后视镜
  • right_mirror - 右后视镜
  • tailgate - 尾门(对于SUV、货车等车型)
  • trunk - 行李箱盖(对于轿车)
  • wheel - 车轮

这些术语是用来标识汽车不同部分的,在进行车辆部件检测和分割时会用到。

这段描述提供了一个数据集的概览,包括图像数量、数据集分割情况以及预处理和数据增强的步骤。下面是对这些信息的总结:

数据集总览

  • 总图像数:1450张

数据集分割

  • 训练集
    • 占比:98%
    • 图像数量:1425张
  • 验证集
    • 占比:2%
    • 图像数量:25张
  • 测试集
    • 占比:0%
    • 图像数量:0张

预处理

  • 自动定向:已应用
  • 调整大小:拉伸到640x640像素

数据增强

  • 每个训练样本输出:3个
  • 翻转:水平翻转
  • 旋转:在-15°到+15°之间
  • 剪切:±15°水平,±15°垂直
  • 灰度化:应用于25%的图像

这种设置有助于提高模型的泛化能力,通过数据增强来增加训练样本的多样性,并且保证了大多数图像用于训练,一小部分用于验证模型的表现。没有单独的测试集可能意味着验证集将被用来评估最终模型性能,或者计划在未来的某个阶段添加一个独立的测试集来进行最终评估。

如果您需要进一步的帮助,例如如何使用这个数据集进行训练或具体的技术细节,请告诉我。

相关推荐
叶子爱分享9 小时前
计算机视觉与图像处理的关系
图像处理·人工智能·计算机视觉
cver1239 小时前
野生动物检测数据集介绍-5,138张图片 野生动物保护监测 智能狩猎相机系统 生态研究与调查
人工智能·pytorch·深度学习·目标检测·计算机视觉·目标跟踪
学技术的大胜嗷9 小时前
离线迁移 Conda 环境到 Windows 服务器:用 conda-pack 摆脱硬路径限制
人工智能·深度学习·yolo·目标检测·机器学习
kyle~11 小时前
目标检测在国防和政府的应用实例
人工智能·目标检测·计算机视觉
Akttt12 小时前
【T2I】R&B: REGION AND BOUNDARY AWARE ZERO-SHOT GROUNDED TEXT-TO-IMAGE GENERATION
人工智能·深度学习·计算机视觉·text2img
jndingxin13 小时前
OpenCV CUDA模块设备层-----反向二值化阈值处理函数thresh_binary_inv_func()
人工智能·opencv·计算机视觉
jndingxin14 小时前
OpenCV CUDA模块设备层-----在 GPU 上执行类似于 std::copy 的操作函数warpCopy()
人工智能·opencv·计算机视觉
jndingxin14 小时前
OpenCV CUDA模块设备层-----在GPU 上高效地执行两个 uint 类型值的最大值比较函数vmax2()
人工智能·opencv·计算机视觉
顾道长生'16 小时前
(Arxiv-2024)自回归模型优于扩散:Llama用于可扩展的图像生成
计算机视觉·数据挖掘·llama·自回归模型·多模态生成与理解
千宇宙航16 小时前
闲庭信步使用SV搭建图像测试平台:第二十七课——图像的腐蚀
图像处理·计算机视觉·fpga开发