车辆零部件检测和分割数据集-车体数据集-yolo格式-yolov5-yolov10可用

这些标签是用于实例分割任务中的类别,通常在汽车图像识别或自动驾驶技术中使用。以下是这些类别:

  • back_bumper - 后保险杠
  • back_glass - 后挡风玻璃
  • back_left_door - 后左车门
  • back_left_light - 后左灯
  • back_right_door - 后右车门
  • back_right_light - 后右灯
  • front_bumper - 前保险杠
  • front_glass - 前挡风玻璃
  • front_left_door - 前左车门
  • front_left_light - 前左灯
  • front_right_door - 前右车门
  • front_right_light - 前右灯
  • hood - 发动机盖
  • left_mirror - 左后视镜
  • right_mirror - 右后视镜
  • tailgate - 尾门(对于SUV、货车等车型)
  • trunk - 行李箱盖(对于轿车)
  • wheel - 车轮

这些术语是用来标识汽车不同部分的,在进行车辆部件检测和分割时会用到。

这段描述提供了一个数据集的概览,包括图像数量、数据集分割情况以及预处理和数据增强的步骤。下面是对这些信息的总结:

数据集总览

  • 总图像数:1450张

数据集分割

  • 训练集
    • 占比:98%
    • 图像数量:1425张
  • 验证集
    • 占比:2%
    • 图像数量:25张
  • 测试集
    • 占比:0%
    • 图像数量:0张

预处理

  • 自动定向:已应用
  • 调整大小:拉伸到640x640像素

数据增强

  • 每个训练样本输出:3个
  • 翻转:水平翻转
  • 旋转:在-15°到+15°之间
  • 剪切:±15°水平,±15°垂直
  • 灰度化:应用于25%的图像

这种设置有助于提高模型的泛化能力,通过数据增强来增加训练样本的多样性,并且保证了大多数图像用于训练,一小部分用于验证模型的表现。没有单独的测试集可能意味着验证集将被用来评估最终模型性能,或者计划在未来的某个阶段添加一个独立的测试集来进行最终评估。

如果您需要进一步的帮助,例如如何使用这个数据集进行训练或具体的技术细节,请告诉我。

相关推荐
想要成为计算机高手4 小时前
Helix:一种用于通用人形控制的视觉语言行动模型
人工智能·计算机视觉·自然语言处理·大模型·vla
Eric.Lee202110 小时前
数据集-目标检测系列- 冥想 检测数据集 close_eye>> DataBall
人工智能·目标检测·计算机视觉·yolo检测·眼睛开闭状态检测识别
shadowtalon11 小时前
基于CNN的猫狗图像分类系统
人工智能·深度学习·神经网络·机器学习·计算机视觉·分类·cnn
豆芽81912 小时前
Vision Transformer(ViT)
人工智能·深度学习·目标检测·计算机视觉·transformer
終不似少年遊*13 小时前
MindSpore框架学习项目-ResNet药物分类-模型优化
人工智能·深度学习·机器学习·计算机视觉·分类·数据挖掘·华为云
向哆哆16 小时前
UniRepLknet助力YOLOv8:高效特征提取与目标检测性能优化
人工智能·yolo·目标检测·yolov8
大G哥17 小时前
19_大模型微调和训练之-基于LLamaFactory+LoRA微调LLama3
人工智能·pytorch·python·深度学习·计算机视觉
EDPJ19 小时前
(2025,AR,NAR,GAN,Diffusion,模型对比,数据集,评估指标,性能对比)文本到图像生成和编辑:综述
深度学习·生成对抗网络·计算机视觉
白熊18819 小时前
计算机视觉】OpenCV项目实战:eye_mouse_movement:基于opencv实战眼睛控制鼠标
opencv·计算机视觉·计算机外设
odoo中国20 小时前
机器学习实操 第二部分 神经网路和深度学习 第14章 使用卷积神经网络进行深度计算机视觉
机器学习·计算机视觉·cnn