LLM基础概念:Prompt

在 AI 语言模型中,"prompt"是一个指示性文本或问题,用于引导模型生成相应的回答或响应。Prompt 可以是一个简短的问题、一段描述性的文本或具体的指令,用于指导模型完成特定的任务或产生特定类型的回答。

在prompt中,"role"是指与对话参与者相关的角色,通常包括:用户、系统和助手。每个角色在对话中扮演不同的角色和功能。这些角色的区别如下:

  • 用户(user):用户是对话的发起者,提供问题、指令或信息,以期望从模型中获取相应的回答或相应。
  • 系统(system):系统是对话中模型扮演的角色,他代表具有特定任务或目标的服务或应用程序。系统的主要责任是根据用户的请求或指令生成合适的回答或响应。
  • 助手(assistant):助手是一个中立的角色,他可以提供帮助、解释或补充信息,以促进对话的进行和理解。

这些角色的目的是为了模拟真实对话中的参与者,并帮助模型正确理解和生成符合对话场景的回答或响应。

为什么需要prompt

  1. 引导模型:prompt提供了一种方式来引导模型生成特定类型的回答或响应。通过在prompt中提供明确的指令或问题,可以更好的控制模型的输出,使其更符合预期。
  2. 上下文建模:通过在prompt中设置适当的上下文信息,模型可以更好的理解对话的背景和先前的交互,从而生成更连贯和一致的回答或响应。
  3. 任务定制:对特定的任务或应用场景,prompt可以提供特定的指导和要求,使模型能够针对特定任务生成相关的回答或响应。
  4. 避免误导:通过合理设计prompt,可以减少模型收到误导或生成不合适的回答的可能性。良好设计的prompt可以帮助模型更准确的理解用户意图并生成合理的回答。

总的来说,prompt在对话系统重起到引导和指导模型生成合适回答或响应的作用,并帮助建立对话的上下文和参与角色,以更好的模拟真实对话场景。

什么是prompt injection

prompt injection通常是通过在对话的起始或每个对话轮次插入特定的文本来实现的。这些文本可以是问题、指令、上下文信息或任务相关的提示,以引导模型生成与特定任务或目标相符合的回答。

通过prompt injection,可以引导模型产生特定领域的回答,提供特定的信息或执行特定的操作。例如,在问答任务中,可以在prompt中提供问题和相关上下文,以引导模型生成相关的答案。在任务导向的对话中,可以在每个对话轮次重注入指令或任务目标,以引导模型按照特定的任务要求进行回答。

prompt injection的好处是可以更好地控制对话模型的输出,使其更符合特定任务的要求。他可以提供更精确的引导和指导,避免模型生成不相关或不准确的问答。同时,prompt injection也可以帮助模型更好的理解对话的上下文和用户意图,从而生成更连贯和一致的回答。

prompt injection也可以是一种类似sql注入的风险。让模型回答本不该回答的问题,从而绕过安全协议提取敏感信息。

相关推荐
沉下心来学鲁班14 分钟前
复现LLM:带你从零认识语言模型
人工智能·语言模型
数据猎手小k14 分钟前
AndroidLab:一个系统化的Android代理框架,包含操作环境和可复现的基准测试,支持大型语言模型和多模态模型。
android·人工智能·机器学习·语言模型
YRr YRr23 分钟前
深度学习:循环神经网络(RNN)详解
人工智能·rnn·深度学习
sp_fyf_202435 分钟前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘
多吃轻食39 分钟前
大模型微调技术 --> 脉络
人工智能·深度学习·神经网络·自然语言处理·embedding
萧鼎1 小时前
Python并发编程库:Asyncio的异步编程实战
开发语言·数据库·python·异步
学地理的小胖砸1 小时前
【一些关于Python的信息和帮助】
开发语言·python
疯一样的码农1 小时前
Python 继承、多态、封装、抽象
开发语言·python
Python大数据分析@1 小时前
python操作CSV和excel,如何来做?
开发语言·python·excel
黑叶白树1 小时前
简单的签到程序 python笔记
笔记·python