Agent智能体

Agent(智能体)是一个能够感知环境并采取行动的自主实体,通常被设计用于在特定的环境中执行任务。智能体可以通过学习、推理等方式来决策,目标是最大化某种效用或实现某个预定的目标。它们广泛应用于自动化系统、游戏AI、机器人、自然语言处理、推荐系统等领域。

Agent的主要特性:

  1. 自主性(Autonomy):智能体可以自主地对环境进行感知并做出决策,而不依赖外部指令。
  2. 感知能力(Perception):能够感知外界环境,通过传感器或其他机制获取外界信息。
  3. 行动能力(Action):能基于感知的信息采取相应的动作或行为,通过执行器或输出系统对环境产生影响。
  4. 目标导向性(Goal-oriented):智能体通过采取行动以达到某个预定目标或最大化某种效用函数。
  5. 持续性(Persistence):智能体是一个持续运行的实体,而不是一次性运行的程序。

Agent的分类:

  • 简单反应型智能体(Simple Reactive Agent):直接基于当前的感知采取行动,没有内部状态。
  • 基于模型的智能体(Model-based Agent):能够保存部分环境的状态信息,并基于历史信息进行决策。
  • 目标驱动型智能体(Goal-based Agent):智能体具有特定的目标,决策的目的是为了实现这些目标。
  • 效用驱动型智能体(Utility-based Agent):智能体不仅有目标,还能够通过效用函数评估不同选择的优劣,以最大化效用。

智能体奠基论文及其原理:

  1. 《A Logical Calculus of the Ideas Immanent in Nervous Activity》 by Warren McCulloch and Walter Pitts (1943)

    这篇论文可以被看作是神经网络和智能体研究的起点之一,描述了以逻辑形式模拟神经系统的模型,被认为是启发了后续智能体的理论。它提出了以离散神经元为基础的计算模型。

  2. 《Plans and the Structure of Behavior》 by George A. Miller, Eugene Galanter, and Karl H. Pribram (1960)

    这篇论文提出了认知科学中的"计划"理论,认为智能体可以基于目标和计划行动,这是将心理学与计算智能结合的早期工作。

  3. 《An Agent-Based Software Architecture for Human-Computer Interaction》 by Pattie Maes (1994)

    这篇论文将智能体引入软件系统设计,描述了"代理"的概念,即一种通过感知-行动循环运行的实体,可以处理动态的、复杂的环境,并在人机交互中展现智能。

  4. 《Intelligent Agents: Theory and Practice》 by Michael Wooldridge and Nicholas R. Jennings (1995)

    这篇论文提供了智能体研究领域的系统性介绍,提出了多智能体系统的概念,并讨论了智能体的协作、交互等问题。文中提到的BDI(Belief-Desire-Intention)模型成为智能体设计中的经典模型,它利用智能体的信念、欲望和意图来进行决策和规划。

  5. 《Reinforcement Learning: An Introduction》 by Richard S. Sutton and Andrew G. Barto (1998)

    虽然这本书主要聚焦于强化学习,但强化学习可以视为智能体通过试错法与环境互动,逐渐学习最优策略的过程。强化学习为现代智能体的自主学习和决策提供了坚实的理论基础。

智能体的核心原理:

  1. 感知-决策-行动回路:智能体通过不断地感知环境,基于感知的信息通过某种策略或学习机制做出决策,进而采取行动。
  2. 目标与策略:智能体通常有明确的目标或效用函数,它的行为是基于优化这些目标。策略可以是预先设定的(基于规则或模型),也可以通过学习动态生成。
  3. 学习:很多智能体能够从经验中学习,不断调整其策略以在未来的情境中表现得更好。强化学习是典型的学习方式。
  4. 环境的状态和动态:智能体的决策不仅依赖于当前的感知,还依赖于其对环境动态的建模和预测,即基于当前状态推测未来变化。

这些概念为现代AI中各类智能体的设计和实现奠定了基础,如自动驾驶汽车、游戏中的NPC角色、金融市场中的交易代理等。

相关推荐
会飞的老朱13 小时前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
聆风吟º14 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
Codebee16 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º17 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys17 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_567817 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子17 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能18 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_1601448718 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile18 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算