机器学习(5):机器学习项目步骤(二)——收集数据与预处理

1. 数据收集与预处理的任务?

为机器学习模型提供好的"燃料"

2. 数据收集与预处理的分步骤?

收集数据-->数据可视化-->数据清洗-->特征工程-->构建特征集和数据集-->拆分数据集、验证集和测试集

3. 数据可视化工作?

a. **作用:**通过可视化观察一下数据,为选择具体的机器学习模型找找感觉。

b. 具体应用:

  • 可以看一看特征和标签之间可能存在的关系

  • 也可以看看数据里有没有"脏数据"和"离群点"

c. **可视化工具:**Matplotlib,Seaborn

  • 散点图:验证线性关系
python 复制代码
 plt.plot(df_ads['点赞数'],df_ads['浏览量'],'r.', label='Training data') # 用matplotlib.pyplot的plot方法显示散点图
 plt.xlabel('点赞数') # x轴Label
 plt.ylabel('浏览量') # y轴Label
 plt.legend() # 显示图例
 plt.show() # 显示绘图结果!
  • 箱线图:检查数据集是否有"离群点".(选择了"热度指数"特征)
python 复制代码
 data = pd.concat([df_ads['浏览量'], df_ads['热度指数']], axis=1) # 浏览量和热度指数
 fig = sns.boxplot(x='热度指数', y="浏览量", data=data) # 用seaborn的箱线图画图
 fig.axis(ymin=0, ymax=800000); #设定y轴坐标、

4. 数据清洗工作的任务?

清洗数据的4种情况:

  • 处理缺失值的数据

  • 处理重复值的数据

  • 处理错误的数据

  • 处理不可用的数据

5. 特征工程

  • 以 BMI 特征工程为例,它降低了特征数据集的维度。维度就是数据集特征的个数。

  • 要知道,在数据集中,每多一个特征,模型拟合时的特征空间就更大,运算量也就更大。

  • 摒弃掉冗余的特征、降低特征的维度,能使机器学习模型训练得更快。

6. 构建特征集和数据集

python 复制代码
X=df.drop('浏览量',axis=1)
Y=df['浏览量']
print(X.head())
print(Y.head())

7. 拆分训练集、验证集和测试集

具体的拆分,我们会用机器学习工具包 scikit-learn 里的数据集拆分工具 train_test_split 来完成。

虽然是随机分割,但我们要指定一个 random_state 值,这样就保证程序每次运行都分割一样的训练集和测试集

python 复制代码
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(X,Y,test_size=0.2,random_state=0)
相关推荐
DevUI团队12 小时前
🔥Angular开发者看过来:不止于Vue,MateChat智能化UI库现已全面支持Angular!
前端·人工智能·angular.js
北京青翼科技12 小时前
【HD200IS A2 DK 】昇腾 310B 高可靠智能计算开发套件
图像处理·人工智能·信号处理·智能硬件
智算菩萨12 小时前
从 0 到 1 搭建 AI 智能体:从创建、知识库与提示词,到 MCP 接入和多智能体协作的全流程实践与评测
人工智能
onebound_noah12 小时前
电商图片搜索:技术破局与商业落地,重构“视觉到交易”全链路
大数据·前端·网络·人工智能·重构·php
得贤招聘官12 小时前
AI得贤面试智能体:重构企业招聘新范式
人工智能
SEO_juper12 小时前
谷歌搜索全面AI化:SGE如何重构我们的搜索体验与营销格局
人工智能·ai·重构·数字营销
好多渔鱼好多12 小时前
【音视频】AI自适应均衡器的调节精度提升方法
人工智能·音视频
昨日之日200612 小时前
InfiniteTalk V2版 - 声音驱动图片生成高度逼真的说话/唱歌视频 支持50系显卡 ComfyUI+WebUI 一键整合包下载
人工智能·深度学习·音视频
老蒋新思维12 小时前
破局与重构:借 “创始人 IP + AI” 开启智能商业新征程|创客匠人
网络·人工智能·网络协议·tcp/ip·重构·知识付费·创客匠人
KKKlucifer12 小时前
智能越进化,防线越脆弱?AI 时代数据安全的底层挑战与重构
人工智能·重构