机器学习(5):机器学习项目步骤(二)——收集数据与预处理

1. 数据收集与预处理的任务?

为机器学习模型提供好的"燃料"

2. 数据收集与预处理的分步骤?

收集数据-->数据可视化-->数据清洗-->特征工程-->构建特征集和数据集-->拆分数据集、验证集和测试集

3. 数据可视化工作?

a. **作用:**通过可视化观察一下数据,为选择具体的机器学习模型找找感觉。

b. 具体应用:

  • 可以看一看特征和标签之间可能存在的关系

  • 也可以看看数据里有没有"脏数据"和"离群点"

c. **可视化工具:**Matplotlib,Seaborn

  • 散点图:验证线性关系
python 复制代码
 plt.plot(df_ads['点赞数'],df_ads['浏览量'],'r.', label='Training data') # 用matplotlib.pyplot的plot方法显示散点图
 plt.xlabel('点赞数') # x轴Label
 plt.ylabel('浏览量') # y轴Label
 plt.legend() # 显示图例
 plt.show() # 显示绘图结果!
  • 箱线图:检查数据集是否有"离群点".(选择了"热度指数"特征)
python 复制代码
 data = pd.concat([df_ads['浏览量'], df_ads['热度指数']], axis=1) # 浏览量和热度指数
 fig = sns.boxplot(x='热度指数', y="浏览量", data=data) # 用seaborn的箱线图画图
 fig.axis(ymin=0, ymax=800000); #设定y轴坐标、

4. 数据清洗工作的任务?

清洗数据的4种情况:

  • 处理缺失值的数据

  • 处理重复值的数据

  • 处理错误的数据

  • 处理不可用的数据

5. 特征工程

  • 以 BMI 特征工程为例,它降低了特征数据集的维度。维度就是数据集特征的个数。

  • 要知道,在数据集中,每多一个特征,模型拟合时的特征空间就更大,运算量也就更大。

  • 摒弃掉冗余的特征、降低特征的维度,能使机器学习模型训练得更快。

6. 构建特征集和数据集

python 复制代码
X=df.drop('浏览量',axis=1)
Y=df['浏览量']
print(X.head())
print(Y.head())

7. 拆分训练集、验证集和测试集

具体的拆分,我们会用机器学习工具包 scikit-learn 里的数据集拆分工具 train_test_split 来完成。

虽然是随机分割,但我们要指定一个 random_state 值,这样就保证程序每次运行都分割一样的训练集和测试集

python 复制代码
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(X,Y,test_size=0.2,random_state=0)
相关推荐
运器1235 分钟前
【一起来学AI大模型】算法核心:数组/哈希表/树/排序/动态规划(LeetCode精练)
开发语言·人工智能·python·算法·ai·散列表·ai编程
aneasystone本尊8 分钟前
管理 Claude Code 的工具权限
人工智能
聚客AI22 分钟前
大模型学习进阶路线图:从Prompt到预训练的四阶段全景解析
人工智能·llm·掘金·日新计划
张德锋24 分钟前
Pytorch实现天气识别
机器学习
晓131327 分钟前
第七章 OpenCV篇——角点检测与特征检测
人工智能·深度学习·计算机视觉
DeepSeek大模型官方教程1 小时前
NLP之文本纠错开源大模型:兼看语音大模型总结
大数据·人工智能·ai·自然语言处理·大模型·产品经理·大模型学习
MidJourney中文版2 小时前
深度报告:中老年AI陪伴机器人需求分析
人工智能·机器人
王上上2 小时前
【论文阅读41】-LSTM-PINN预测人口
论文阅读·人工智能·lstm
智慧化智能化数字化方案2 小时前
69页全面预算管理体系的框架与落地【附全文阅读】
大数据·人工智能·全面预算管理·智慧财务·智慧预算
PyAIExplorer2 小时前
图像旋转:从原理到 OpenCV 实践
人工智能·opencv·计算机视觉