pick你的第一个人形机器人——青龙强化学习环境测试

文章目录

最近感受到的大趋势是具身智能,强化学习,模仿学习做人形机器人,这个赛道很火,颇有前些年全力投入做自动驾驶的架势,正好最近用强化学习解决POMDP问题接触到了强化学习,闲逛博客发现了上海人工智能实验室青龙开源强化学习环境。正好以此来练练手,了解了解人形机器人。

一、环境配置

  • 本地环境
    • 系统:ubuntu22.04
    • CPU: Intel® Core™ i9-14900K
    • GPU: NVIDIA GeForce RTX 4090
    • Docker version 26.0.0, build 2ae903e
    • Driver Version: 535.171.04
    • CUDA Version: 12.2

conda安装可以参考我配置pytorch环境的博客Ubuntu20.04系统配置Pytorch环境(GPU版)

1.创建虚拟环境

bash 复制代码
conda create -n AzureLoong python=3.8

2.激活虚拟环境

bash 复制代码
conda activate AzureLoong

3.安装pytorch

bash 复制代码
pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 --extra-index-url https://download.pytorch.org/whl/cu117

4.克隆源码

bash 复制代码
git clone https://atomgit.com/openloong/gymloong

5.安装Issac gym

bash 复制代码
cd ./gymloong/isaacgym/python
pip install -e .

6.测试示例

bash 复制代码
cd ./examples 
python joint_monkey.py

此时有可能会报错,报错信息如下:

python 复制代码
ImportError: libpython3.8.so.1.0: cannot open shared object file: No such file or directory

在命令行中输入以下指令

bash 复制代码
sudo find / -name libpython3.8.so.1.0

找到AzureLoong中的libpython3.8.so.1.0,如图所示

使用以下命令将其复制到/usr/lib目录下

bash 复制代码
sudo cp /home/kemove/miniconda3/envs/AzureLoong/lib/libpython3.8.so.1.0  /usr/lib/

重新以下执行指令,出现以下界面说明安装成功

bash 复制代码
cd ./examples 
python joint_monkey.py

7.安装gpu_rl

bash 复制代码
##注意这里使用自己的路径,我这里使用的是本地的绝对路径
cd /home/kemove/gymloong/AzureLoong/gpu_rl
pip install -e .

这里会报一个错,是setuptools版本太高了,重新安装其指定的版本,然后重新执行安装gpu_rl的指令即可

bash 复制代码
##安装指定版本
pip install setuptools==59.5.0
##重新安装gpu_rl
pip install -e .

8.安装gpuGym

bash 复制代码
##注意这里使用自己的路径,我这里使用的是本地的绝对路径
cd /home/kemove/gymloong/AzureLoong
pip install -e .

9.安装WandB

bash 复制代码
pip install wandb

二、开始训练

1.进入到训练脚本所在的路径

bash 复制代码
##注意这里使用自己的路径,我这里使用的是本地的绝对路径
cd /home/kemove/gymloong/AzureLoong/gpugym/scripts

2.执行以下指令开始训练

bash 复制代码
python train.py --task=AzureLoong

训练正常开始会弹出以下画面,按V暂停可视化,命令行中显示了每轮训练中奖励的平均数值

三、训练成果

训练结束后,输入以下指令展示训练的结果

bash 复制代码
python play.py --task=AzureLoong

训练结果如下图所示,图中的小点点是一个个小机器人,它们跑到了四面八方,目前我还不理解这结果能说明什么,等以后再研究吧

目前只是跑通了训练的demo,该框架的研究以后再补坑,先研究决策规划去了。

相关推荐
weisian1518 分钟前
入门篇--人工智能发展史-4-点燃深度学习革命的那把火,AlexNet
人工智能·深度学习
FL16238631291 小时前
传送带异物检测玻璃碴子检测数据集VOC+YOLO格式156张1类别
深度学习·yolo·机器学习
ccLianLian1 小时前
CASS总结
人工智能·深度学习
拾贰_C2 小时前
【python | pytorch | scipy】scipy scikit-learn库相互依赖?
pytorch·python·scipy
我不是小upper2 小时前
从理论到代码:随机森林 + GBDT+LightGBM 融合建模解决回归问题
人工智能·深度学习·算法·随机森林·机器学习·回归
拾贰_C2 小时前
【python | pytorch | warehouse】python库scipy与scikit-learn库不兼容?
pytorch·python·scipy
AI猫站长2 小时前
商汤科技孵化“大晓机器人”,联合创始人王晓刚亲自挂帅,推出开源世界模型3.0与具身超级大脑模组,万亿具身智能赛道再迎重量级玩家,行业竞争格局生变
科技·机器人·开源
具身智能之心3 小时前
远超基线模型!X-Humanoid:推动机器人从 “真实数据” 向 “虚拟合成 + 互联网数据” 转型
机器人·具身智能
weixin_464078073 小时前
环境配置。
人工智能·深度学习