pick你的第一个人形机器人——青龙强化学习环境测试

文章目录

最近感受到的大趋势是具身智能,强化学习,模仿学习做人形机器人,这个赛道很火,颇有前些年全力投入做自动驾驶的架势,正好最近用强化学习解决POMDP问题接触到了强化学习,闲逛博客发现了上海人工智能实验室青龙开源强化学习环境。正好以此来练练手,了解了解人形机器人。

一、环境配置

  • 本地环境
    • 系统:ubuntu22.04
    • CPU: Intel® Core™ i9-14900K
    • GPU: NVIDIA GeForce RTX 4090
    • Docker version 26.0.0, build 2ae903e
    • Driver Version: 535.171.04
    • CUDA Version: 12.2

conda安装可以参考我配置pytorch环境的博客Ubuntu20.04系统配置Pytorch环境(GPU版)

1.创建虚拟环境

bash 复制代码
conda create -n AzureLoong python=3.8

2.激活虚拟环境

bash 复制代码
conda activate AzureLoong

3.安装pytorch

bash 复制代码
pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 --extra-index-url https://download.pytorch.org/whl/cu117

4.克隆源码

bash 复制代码
git clone https://atomgit.com/openloong/gymloong

5.安装Issac gym

bash 复制代码
cd ./gymloong/isaacgym/python
pip install -e .

6.测试示例

bash 复制代码
cd ./examples 
python joint_monkey.py

此时有可能会报错,报错信息如下:

python 复制代码
ImportError: libpython3.8.so.1.0: cannot open shared object file: No such file or directory

在命令行中输入以下指令

bash 复制代码
sudo find / -name libpython3.8.so.1.0

找到AzureLoong中的libpython3.8.so.1.0,如图所示

使用以下命令将其复制到/usr/lib目录下

bash 复制代码
sudo cp /home/kemove/miniconda3/envs/AzureLoong/lib/libpython3.8.so.1.0  /usr/lib/

重新以下执行指令,出现以下界面说明安装成功

bash 复制代码
cd ./examples 
python joint_monkey.py

7.安装gpu_rl

bash 复制代码
##注意这里使用自己的路径,我这里使用的是本地的绝对路径
cd /home/kemove/gymloong/AzureLoong/gpu_rl
pip install -e .

这里会报一个错,是setuptools版本太高了,重新安装其指定的版本,然后重新执行安装gpu_rl的指令即可

bash 复制代码
##安装指定版本
pip install setuptools==59.5.0
##重新安装gpu_rl
pip install -e .

8.安装gpuGym

bash 复制代码
##注意这里使用自己的路径,我这里使用的是本地的绝对路径
cd /home/kemove/gymloong/AzureLoong
pip install -e .

9.安装WandB

bash 复制代码
pip install wandb

二、开始训练

1.进入到训练脚本所在的路径

bash 复制代码
##注意这里使用自己的路径,我这里使用的是本地的绝对路径
cd /home/kemove/gymloong/AzureLoong/gpugym/scripts

2.执行以下指令开始训练

bash 复制代码
python train.py --task=AzureLoong

训练正常开始会弹出以下画面,按V暂停可视化,命令行中显示了每轮训练中奖励的平均数值

三、训练成果

训练结束后,输入以下指令展示训练的结果

bash 复制代码
python play.py --task=AzureLoong

训练结果如下图所示,图中的小点点是一个个小机器人,它们跑到了四面八方,目前我还不理解这结果能说明什么,等以后再研究吧

目前只是跑通了训练的demo,该框架的研究以后再补坑,先研究决策规划去了。

相关推荐
算法狗21 分钟前
大模型面试题:混合精度训练的缺点是什么
人工智能·深度学习·机器学习·语言模型
熊文豪15 分钟前
从零开始:基于CANN ops-transformer的自定义算子开发指南
人工智能·深度学习·transformer·cann
chian-ocean21 分钟前
视觉新范式:基于 `ops-transformer` 的 Vision Transformer 高效部署
人工智能·深度学习·transformer
User_芊芊君子1 小时前
CANN数学计算基石ops-math深度解析:高性能科学计算与AI模型加速的核心引擎
人工智能·深度学习·神经网络·ai
China_Yanhy1 小时前
入职 Web3 运维日记 · 第 8 日:黑暗森林 —— 对抗 MEV 机器人的“三明治攻击”
运维·机器人·web3
纤纡.1 小时前
PyTorch 入门精讲:从框架选择到 MNIST 手写数字识别实战
人工智能·pytorch·python
程序员清洒2 小时前
CANN模型安全:从对抗防御到隐私保护的全栈安全实战
人工智能·深度学习·安全
User_芊芊君子2 小时前
CANN_PTO_ISA虚拟指令集全解析打造跨平台高性能计算的抽象层
人工智能·深度学习·神经网络
HyperAI超神经2 小时前
在线教程|DeepSeek-OCR 2公式/表格解析同步改善,以低视觉token成本实现近4%的性能跃迁
开发语言·人工智能·深度学习·神经网络·机器学习·ocr·创业创新
空白诗3 小时前
CANN ops-nn 算子解读:Stable Diffusion 图像生成中的 Conv2D 卷积实现
深度学习·计算机视觉·stable diffusion