ElasticSearch的安装与使用

ElasticSearch的安装与使用

docker安装

docker进行安装Elasticsearch

1.拉取镜像
shell 复制代码
docker pull elasticsearch:7.6.2
2.创建实例
shell 复制代码
mkdir -p /docker/elasticsearch/config
mkdir -p /docker/elasticsearch/data
echo "http.host: 0.0.0.0" >> /docker/elasticsearch/config/elasticsearch.yml
chmod -R 777 /docker/elasticsearch/ 
docker run --name elasticsearch -p 9200:9200 -p 9300:9300 \
-e "discovery.type=single-node" \
-e ES_JAVA_OPTS="-Xms256m -Xmx512m" \
-v /docker/elasticsearch/config/elasticsearch.yml:/usr/share/elasticsearch/config/elasticsearch.yml \
-v /docker/elasticsearch/data:/usr/share/elasticsearch/data \
-v /docker/elasticsearch/plugins:/usr/share/elasticsearch/plugins \
-d elasticsearch:7.6.2

-e ES_JAVA_OPTS="-Xms256m -Xmx512m 设置 ES 的初始内存和最大内存

docker进行安装Kibana

1.拉取镜像
shell 复制代码
docker pull kibana:7.6.2 可视化界面
2.创建实例
shell 复制代码
docker run --name kibana -e ELASTICSEARCH_HOSTS=http://<你的虚拟机ip>:9200 -p 5601:5601 \
-d kibana:7.4.2

Elasticsearch的简单使用

倒排索引机制

mysql这种就是正向索引,倒排索引就是相当于先找词,再通过词对应id去找内容

进入kibana

  • 进入 <你的ip地址>:5601

基础命令

json 复制代码
GET /_cat/nodes
# 查看所有节点
GET /_cat/health
# 查看 es 健康状况
GET /_cat/master
# 查看主节点
GET /_cat/indices
# 查看所有索引

1.增加

  • 在 test 索引下的 filed 类型下保存 1 号数据
json 复制代码
PUT test/filed/1
{ 
	"name": "Your Name"
}

事实上POST 与 PUT都可以

POST 新增。如果不指定 id,会自动生成 id。指定 id 就会修改这个数据,并新增版本号

PUT 可以新增可以修改。从、但PUT 必须指定 id;

2.查询

  • 去查询我们刚刚插入的数据
json 复制代码
GET test/filed/1
  • 结果:
json 复制代码
{
  "_index" : "test",
  "_type" : "filed",
  "_id" : "1",
  "_version" : 1,
  "_seq_no" : 0,
  "_primary_term" : 1,
  "found" : true,
  "_source" : {
    "name" : "Your Name"
  }
}

3.更新

json 复制代码
POST test/filed/1/_update
{ 
	"doc":{ 
		"name": "Your Name1"
	}
}
POST test/filed/1
{ 
	"name": "Your Name2"
}
PUT test/filed/1
{ 
	"name": "Your Name3"
}

那么这几种方式有什么不同呢?

不同:POST 操作会对比数据,如果相同不会有什么操作,文档 version 不增加,PUT 操作总会将数据重新保存并增加 version 版本;

_update对比元数据如果一样就不进行任何操作。

version有什么用?

  • version 版本号 -- 7之前用来做乐观锁
  • seq_no 更新次数 -- 7用来做乐观锁

4.删除

json 复制代码
DELETE test/filed/1
DELETE test

5.批量操作

json 复制代码
POST test/filed/_bulk
{"index":{"_id":"1"}}
{"name":"Your Name1"}
{"index":{"_id":"2"}}
{"name":"Your Name2"}`

Elasticsearch进阶

SearchAPI

ES 支持两种基本方式检索

1. 通过使用 REST request URI 发送搜索参数(uri+检索参数)

这种方式是通过在请求的查询字符串中添加搜索参数来实现的。这种方式比较简单,适合快速查询和简单的参数传递。以下是一个使用 URI 参数进行搜索的例子:

json 复制代码
GET /test_index/_search?q=name:John

在这个例子中,/test_index/_search 是请求的路径,?q=name:John 是查询参数,表示我们想要检索索引为 test_index 中 name 字段值为 "John" 的文档。

优点:

简单易用,适合快速查询。

适合传递简单的查询参数。

缺点:

查询字符串长度有限制。

对于复杂的查询,可能难以阅读和编写。

查询参数可能被URL编码,导致查询字符串复杂。

2.通过使用 REST request body 来发送它们(uri+请求体)

这种方式是通过在请求的正文(body)中发送搜索参数来实现的。这种方式可以处理复杂的查询,并且提供了更多的灵活性,尤其是对于结构化查询(如 JSON 格式的查询)。

以下是一个使用请求体发送搜索查询的例子:

json 复制代码
POST /test_index/_search
{
  "query": {
    "match": {
      "name": "John"
    }
  }
}

在这个例子中,/test_index/_search 是请求的路径,请求体是一个 JSON 对象,包含了查询信息。

优点:

支持复杂的查询,包括结构化查询。

请求体是 JSON 格式,便于阅读和编写。

可以发送任何 JSON 数据,包括复杂的查询结构。

缺点:

相比查询字符串,可能更复杂。

需要更多的HTTP请求体处理。

Query DSL

1. 基本语法格式
  • Elasticsearch的Query DSL使用JSON格式来构建查询。基本格式如下:
json 复制代码
{
  "QUERY_NAME": {
    "ARGUMENT": "VALUE",
    "ARGUMENT": "VALUE",
    // ...其他参数
  }
}
对于字段特定的查询,格式如下:

{
  "QUERY_NAME": {
    "FIELD_NAME": {
      "ARGUMENT": "VALUE",
      // ...其他参数
    }
  }
}

QUERY_NAME 是查询的类型,例如 match_all、match、match_phrase 等。

2. 检索信息
  • 查询所有文档
json 复制代码
GET /test_index/_search
{ "query": { "match_all": {} } }
  • 返回部分字段
json 复制代码
GET /test_index/_search
{ "query": { "match_all": {} }, "_source": ["age", "balance"] }
3. Match 查询
json 复制代码
GET /test_index/_search
{ "query": { "match": { "account_number": "20" } } }

Match 查询适用于字符串和基本类型,可以精确匹配或进行全文检索。

  • Match_phrase 查询
json 复制代码
GET /test_index/_search
{ "query": { "match_phrase": { "address": "mill road" } } }
Match_phrase 查询用于短语匹配,不会对短语进行分词。
  • Multi_match 查询
json 复制代码
GET /test_index/_search
{ "query": { "multi_match": { "query": "mill", "fields": ["state", "address"] } } }

Multi_match 查询可以在多个字段上执行匹配。

4.Bool 查询

Bool 查询允许组合多个查询:

  • must:所有条件都必须匹配。
  • should:至少有一个条件匹配。
  • must_not:条件必须不匹配。
json 复制代码
GET /test_index/_search
{ "query": { "bool": { "must": [{ "match": { "address": "mill" } }, { "match": { "gender": "M" } }], "should": [{"match": { "address": "lane" }}], "must_not": [{"match": { "email": "baluba.com" }}] } } }
5.Filter 查询
  • Filter 查询不返回相关性分数,适用于过滤操作。
json 复制代码
GET /test_index/_search
{ "query": { "bool": { "must": [{"match": {"address": "mill"}}], "filter": {"range": {"balance": {"gte": 10000, "lte": 20000}}} } } }
6.Term 查询
  • Term 查询用于精确匹配非字符串字段。
json 复制代码
GET /test_index/_search
{ "query": { "bool": { "must": [{"term": {"age": {"value": "28"}}}, {"match": {"address": "990 Mill Road"}}] } } }
7. 聚合(Aggregations)
  • 聚合用于从数据中提取统计信息。
json 复制代码
GET /test_index/_search
{ "query": { "match": { "address": "mill" } }, "aggs": { "group_by_state": { "terms": { "field": "age" }

Mapping

Mapping(映射)在Elasticsearch中扮演着至关重要的角色,它定义了索引中每个字段的类型、索引方式以及其他一些行为。以下是关于Mapping的详细解释:

1. 字段类型

字段类型(Field Type)是Elasticsearch中用于指定字段数据类型的关键。常见的字段类型包括:

  • keyword:适合精确匹配,如用于过滤、排序和聚合。
  • text:用于全文搜索,索引时会进行分词。
  • integer、long、float、double:用于数字类型的字段。
  • date:用于日期类型的字段。
  • boolean:用于布尔类型的字段。
  • ip、geo_point、geo_shape:用于地理信息字段。
2. 映射

Mapping定义了每个字段的类型、是否被索引、是否分析以及各种其他属性。以下是一些关于映射的要点:

映射可以在创建索引时指定。

映射可以在索引创建后添加或更新,但通常建议在索引创建时完成。

映射定义了字段如何被存储和索引,包括分词器、分析器和索引选项。

json 复制代码
#查看映射信息
GET /my-index/_mapping

#修改映射信息
#创建索引并指定映射:
PUT /my-index
{ "mappings": { "properties": { "age": { "type": "integer" }, "email": { "type": "keyword" }, "name": { "type": "text" } } } }

#添加新的字段映射:
PUT /my-index/_mapping
{ "properties": { "employee-id": { "type": "keyword", "index": false } } }

#更新映射:
#由于Elasticsearch不允许直接更新现有字段的映射,如果需要更新映射,通常的做法是创建一个新的索引并重新索引所有数据。
3.数据迁移

1.创建具有新映射的新索引。

2.使用 _reindex API将旧索引的数据迁移到新索引。

例如:

json 复制代码
POST _reindex
{ "source": { "index": "twitter" }, "dest": { "index": "new_twitter" } }
  • 对于包含多类型的旧索引,可以指定类型进行迁移:
json 复制代码
POST _reindex
{ "source": { "index": "twitter", "type": "tweet" }, "dest": { "index": "tweets" } }
4.新版本改变

Elasticsearch 7.x及以后版本移除了type的概念,这是因为不同类型的相同字段在Lucene中会被视为同一个字段,这可能导致性能问题。以下是几个重要变化:

Elasticsearch 7.x:URL中的type参数为可选。

Elasticsearch 8.x:不再支持URL中的type参数。

为了解决这些问题,通常的做法是将索引从多类型迁移到单类型,或者将类型数据迁移到新的索引中。

相关推荐
kakwooi40 分钟前
Hadoop---MapReduce(3)
大数据·hadoop·mapreduce
数新网络41 分钟前
《深入浅出Apache Spark》系列②:Spark SQL原理精髓全解析
大数据·sql·spark
昨天今天明天好多天6 小时前
【数据仓库】
大数据
油头少年_w6 小时前
大数据导论及分布式存储HadoopHDFS入门
大数据·hadoop·hdfs
Elastic 中国社区官方博客7 小时前
释放专利力量:Patently 如何利用向量搜索和 NLP 简化协作
大数据·数据库·人工智能·elasticsearch·搜索引擎·自然语言处理
力姆泰克7 小时前
看电动缸是如何提高农机的自动化水平
大数据·运维·服务器·数据库·人工智能·自动化·1024程序员节
力姆泰克8 小时前
力姆泰克电动缸助力农业机械装备,提高农机的自动化水平
大数据·服务器·数据库·人工智能·1024程序员节
QYR市场调研8 小时前
自动化研磨领域的革新者:半自动与自动自磨机的技术突破
大数据·人工智能
半部论语9 小时前
第三章:TDengine 常用操作和高级功能
大数据·时序数据库·tdengine
EasyGBS10 小时前
国标GB28181公网直播EasyGBS国标GB28181软件管理解决方案
大数据·网络·音视频·媒体·视频监控·gb28181