【进阶OpenCV】 (2)--Harris角点检测

文章目录

harris角点检测

Harris角点检测 算法是一种常用的计算机视觉算法,用于检测图像中的角点。该算法通过计算图像中每个像素的局部自相关矩阵,来判断该像素是否为角点

角点指图像中局部区域与周围区域有较大灰度变化的点或像素。

一、基本思想

使用一个固定的小窗口在图像上进行任意方向的滑动,比较滑动前与滑动后两种情况,窗口中的像素灰度变化程度,如果存在任意方向上的滑动都有 着较大灰度变化(sobel算子),那么我们可以认为该窗口中存在角点

二、算法实现

原图:

1. 函数方法

python 复制代码
cornerHarris(img,blockSize,ksize,k[,dst[,borderType]]) --> dst

该方法通过分析图像中每个像素点周围的局部特征来判断该点是否为角点。

参数:

python 复制代码
-- img:输入图像
-- blockSize:角点检测中要考虑的领域大小
-- ksize:Sobel求导中使用的窗口大小
-- k:Harris角点检测方程中的自由参数,取值参数为[0.04,0.06]
-- dst:返回numpy.ndarray对象,大小和src相同,值越大,对应像素点是角的概率越高

2. 检测角点

将图片转化为灰度图,简化图像信息,去除了颜色变化对特征检测的影响,使得算法能够更专注于像素值(即亮度)的变化。检测亮度变化。

python 复制代码
img = cv2.imread("tu.jpg")
img_gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
dst = cv2.cornerHarris(img_gray,4,3,0.04)

3. 标记角点

cornerHarris()函数方法会返回一串数值数据,cornerHarris()函数方法返回的dst中数值并不是每个点的亮度大小,而是每个像素点作为角点的响应值(R值) 。这些R值构成了一个灰度图像,其中灰度图像的坐标会与原图像对应,而R值则反映了该像素点是角点的可能性大小。具体来说,当R值很大时,可以认为这个点是一个角点

其中,min与max参数表示dst中的最大值与最小值。

基于此,我们可以对dst设定一个大小范围,大于某个值怎将它标记为角点:

python 复制代码
# 标记检测到的角点
img[dst > 0.01 * dst.max()] = [0,0,255]
# 这里通过对焦点响应进行阈值处理,标记出检测到的角点
# 0.05 * dst.max()是一个阈值,大于这个值的像素点会被标记为红色
cv2.imshow('img',img)
cv2.waitKey(0)

总结

本篇介绍了:

如何使用Harris角点检测 算法来检测图片的角点。使用一个固定的小窗口在图像上进行滑动,如果存在任意方向上的滑动都有 着较大灰度变化(sobel算子),那么我们可以认为该窗口中存在角点

算法上,通过比较cornerHarris()函数方法中返回值的大小,来确定角点。

相关推荐
九年义务漏网鲨鱼22 分钟前
【大模型学习 | MINIGPT-4原理】
人工智能·深度学习·学习·语言模型·多模态
元宇宙时间38 分钟前
Playfun即将开启大型Web3线上活动,打造沉浸式GameFi体验生态
人工智能·去中心化·区块链
开发者工具分享39 分钟前
文本音频违规识别工具排行榜(12选)
人工智能·音视频
产品经理独孤虾1 小时前
人工智能大模型如何助力电商产品经理打造高效的商品工业属性画像
人工智能·机器学习·ai·大模型·产品经理·商品画像·商品工业属性
老任与码1 小时前
Spring AI Alibaba(1)——基本使用
java·人工智能·后端·springaialibaba
蹦蹦跳跳真可爱5891 小时前
Python----OpenCV(图像増强——高通滤波(索贝尔算子、沙尔算子、拉普拉斯算子),图像浮雕与特效处理)
人工智能·python·opencv·计算机视觉
雷羿 LexChien2 小时前
从 Prompt 管理到人格稳定:探索 Cursor AI 编辑器如何赋能 Prompt 工程与人格风格设计(上)
人工智能·python·llm·编辑器·prompt
两棵雪松2 小时前
如何通过向量化技术比较两段文本是否相似?
人工智能
heart000_12 小时前
128K 长文本处理实战:腾讯混元 + 云函数 SCF 构建 PDF 摘要生成器
人工智能·自然语言处理·pdf
敲键盘的小夜猫2 小时前
LLM复杂记忆存储-多会话隔离案例实战
人工智能·python·langchain