Leetcode 3302. Find the Lexicographically Smallest Valid Sequence

  • [Leetcode 3302. Find the Lexicographically Smallest Valid Sequence](#Leetcode 3302. Find the Lexicographically Smallest Valid Sequence)
    • [1. 解题思路](#1. 解题思路)
    • [2. 代码实现](#2. 代码实现)

1. 解题思路

这一题的话由于至多只能够修改一个字符,因此,我们就是要考察每一个字符前正向的最大公共子序列的长度和其后方的从后往前的最大公共子序列的长度。如果两者相加不小于目标目标字符串word2的长度减一,即表示调整当前位置上的字符的话即可获得一个子串使之与目标字符串word2相同。

然后,我们定位到第一个满足上述条件的位置,通过调整该位置获得的字符串就是最优的选项。

最后,我们找到调整该位置所能够获得字符串的index即可。

2. 代码实现

给出python代码实现如下:

python 复制代码
class Solution:
    def validSequence(self, word1: str, word2: str) -> List[int]:
        n, m = len(word1), len(word2)
        if m == 1:
            return [0]
        
        # prefix
        prefix = [0 for _ in word1]
        i, j = 0, 0
        while j < m:
            while i < n and word1[i] != word2[j]:
                prefix[i] = j
                i += 1
            if i >= n:
                break
            j += 1
            prefix[i] = j
            i += 1
        while i < n:
            prefix[i] = j
            i += 1

        # suffix
        i, j = n-1, m-1
        suffix = [0 for _ in word1]
        while j >= 0:
            while i >= 0 and word1[i] != word2[j]:
                suffix[i] = m-1-j
                i -= 1
            if i < 0:
                break
            j -= 1
            suffix[i] = m-1-j
            i -= 1
        while i >= 0:
            suffix[i] = m-1-j
            i -= 1

        # find target idx
        idx = -1
        if word1[0] != word2[0] and suffix[1] >= m-1:
            idx = 0
        else:
            for i in range(1, n-1):
                if prefix[i-1] + suffix[i+1] >= m-1 and prefix[i] != prefix[i-1]+1:
                    idx = i
                    break
        if idx == -1 and prefix[n-2] >= m-1:
            idx = n-1

        # get all the index
        if idx == -1:
            return []
        i, j = 0, 0
        ans = []
        while j < m:
            while i < idx and word1[i] != word2[j]:
                i += 1
            if i >= idx:
                break
            ans.append(i)
            j += 1
            i += 1
        if j < m:
            ans.append(i)
            i += 1
            j += 1
        while j < m:
            while i < n and word1[i] != word2[j]:
                i += 1
            if i >= n:
                break
            ans.append(i)
            j += 1
            i += 1
        return ans

提交代码评测得到:耗时1200ms,占用内存55.7MB。

相关推荐
Espresso Macchiato7 天前
Leetcode 3767. Maximize Points After Choosing K Tasks
leetcode medium·leetcode双周赛171·leetcode 3767
Espresso Macchiato7 天前
Leetcode 3765. Complete Prime Number
leetcode medium·leetcode双周赛171·leetcode 3765
Espresso Macchiato8 天前
Leetcode 3766. Minimum Operations to Make Binary Palindrome
leetcode medium·leetcode 3766·leetcode双周赛171
烛衔溟15 天前
C语言动态规划:最长公共子序列深度解析
c语言·数学建模·动态规划·算法优化·最长公共子序列·lcs
Espresso Macchiato1 个月前
Leetcode 3741. Minimum Distance Between Three Equal Elements II
滑动窗口·leetcode medium·leetcode 3741·leetcode周赛475
Espresso Macchiato2 个月前
Leetcode 3702. Longest Subsequence With Non-Zero Bitwise XOR
leetcode medium·异或操作·leetcode 3702·leetcode周赛470
Espresso Macchiato2 个月前
Leetcode 3694. Distinct Points Reachable After Substring Removal
滑动窗口·leetcode medium·leetcode双周赛166·leetcode 3694
Espresso Macchiato2 个月前
Leetcode 3698. Split Array With Minimum Difference
leetcode medium·分类讨论·leetcode周赛469·leetcode 3698
Espresso Macchiato3 个月前
Leetcode 3665. Twisted Mirror Path Count
动态规划·leetcode medium·leetcode 3665·leetcode双周赛164
Espresso Macchiato3 个月前
Leetcode 3669. Balanced K-Factor Decomposition
动态规划·质因数分解·leetcode medium·leetcode 3669·leetcode周赛465