【论文阅读】FedBABU:TOWARD ENHANCED REPRESENTATION FOR FEDERATED IMAGE CLASSIFICATION

算法流程:

训练过程中冻结客户端的头部参数,只训练主体参数。训练完之后再在客户端本地跑几个epoch微调一下(文章推荐5个)。

由于该算法与FedPer思路过于相似,故读完后跑了个实验。

FedPer:训练过程中只聚合主体参数。与BABU不同的是,BABU直接把头部参数给冻结了,而Per头部依旧是参与训练的。实验结果如下:

  • 引出的疑惑是,Per的头部是全程参与训练的,而BABU的头部训练时是冻结的,只是最后tune了几个epochs,然而Per的性能竟然弱这么多,这是为什么?
  • 最后看到文章第四节实验部分有提到,若过度关注于模型的初始性能(没有本地finetune过的性能),则会导致个性化准确率的减少。同时,集中训练的模型更难个性化。Per的头部参与了过多的训练,这可能是其个性化性能较差的原因。当然本人还有另一种想法,就是Per同时训练头部和主体参数,头部因训练而造成参数的改变也会影响主体的训练效果。而BABU完全锁定了头部参数,专注于主体参数的训练,就是在训练时专注于特征提取能力的提升,这样会使得BABU的主体层性能高于Per,而个性化性能只需要finetune几下就能训练好了,差别不大,故最终BABU的性能高于Per。
  • 另外暂不清楚为何BABU性能弱于avg+finetune但论文中显示BABU明显优于avg+finetune
相关推荐
HollowKnightZ5 小时前
论文阅读笔记:Class-Incremental Learning: A Survey
论文阅读·笔记
Eastmount7 小时前
[论文阅读] (45)C&S24 AISL: 基于攻击意图驱动与序列学习方法的APT攻击检测
论文阅读·系统安全·溯源图·攻击意图·apt攻击检测
小明_GLC9 小时前
ITransformer: Inverted Transformers Are Effective for Time Series Forecasting
论文阅读
依夏c11 小时前
【论文笔记•(多智能体)】Ask Patients with Patience
论文阅读
明明真系叻11 小时前
2025.12.21论文阅读
论文阅读·量子计算
m0_6501082412 小时前
DSGN:基于深度立体几何网络的 3D 目标检测革新
论文阅读·3d目标检测·立体视觉·3d几何体积表示·端到端联合优化·dsgn
m0_6501082412 小时前
FlashLightNet:实时检测与分类静态和闪烁交通灯状态的端到端深度学习框架
论文阅读·自动驾驶·视觉单模态·交通灯状态检测·flashlightnet
m0_6501082413 小时前
PETR:多视图 3D 目标检测的位置嵌入变换新范式
论文阅读·自动驾驶·位置编码·视觉单模态·多视角3d目标检测·petr·3d位置信息与2d特征
Cuby!13 小时前
IEEE Wireless Communications 2025年论文整理2(中英文摘要)
论文阅读·学习·信息与通信
youcans_1 天前
【医学影像 AI】FunBench:评估多模态大语言模型的眼底影像解读能力
论文阅读·人工智能·大语言模型·多模态·眼底图像