【论文阅读】基于真实数据感知的模型功能窃取攻击

摘要

目的

模型功能窃取攻击是人工智能安全领域的核心问题之一,目的是利用有限的与目标模型有关的信息训练出性能接近的克隆模型,从而实现模型的功能窃取。针对此类问题,一类经典的工作是基于生成模型的方法,这类方法利用生成器生成的图像作为查询数据,在同一查询数据下对两个模型预测结果的一致性进行约束,从而进行模型学习。然而此类方法生成器生成的数据常常是人眼不可辨识的图像,不含有任何语义信息,导致目标模型的输出缺乏有效指导性。针对上述问题,提出一种新的模型窃取攻击方法,实现对图像分类器的有效功能窃取。

方法

借助真实的图像数据,利用生成对抗网络(generative adversarial net,GAN)使生成器生成的数据接近真实图像,加强目标模型输出的物理意义。同时,为了提高克隆模型的性能,基于对比学习的思想,提出一种新的损失函数进行网络优化学习。

结果

在两个公开数据集CIFAR-10(Canadian Institute for Advanced Research-10)和SVHN(street view house numbers)的实验结果表明,本文方法能够取得良好的功能窃取效果。在CIFAR-10数据集上,相比目前较先进的方法,本文方法的窃取精度提高了5%。同时,在相同的查询代价下,本文方法能够取得更好的窃取效果,有效降低了查询目标模型的成本。结论 本文提出的模型窃取攻击方法,从数据真实性的角度出发,有效提高了针对图像分类器的模型功能窃取攻击效果,在一定程度上降低了查询目标模型代价。

关键词

模型功能窃取

生成模型

对比学习

对抗攻击

人工智能安全

参考链接

基于真实数据感知的模型功能窃取攻击

相关推荐
飞Link6 小时前
【论文笔记】A Survey on Data Synthesis and Augmentation for Large Language Models
论文阅读·人工智能·语言模型·自然语言处理
何如千泷8 小时前
【论文阅读】MediCLIP: Adapting CLIP for Few-shot Medical Image Anomaly Detection
论文阅读·异常检测·clip
数据艺术家.9 小时前
【论文笔记】On Generative Agents in Recommendation
论文阅读·论文·推荐系统·论文笔记·推荐算法·llm4rec·agent4rec
EchoL、9 小时前
【论文阅读】SteganoGAN:High Capacity Image Steganography with GANs
论文阅读·人工智能·笔记·算法
红苕稀饭66610 小时前
Deep Audio-Visual Speech Recognition论文阅读
论文阅读
有Li11 小时前
泛用型nnUNet脑血管周围间隙识别系统(PINGU)|文献速递-医疗影像分割与目标检测最新技术
论文阅读·深度学习·文献·医学生
墨绿色的摆渡人12 小时前
论文笔记(一百一十三)3D Gaussian Splatting for Real-Time Radiance Field Rendering
论文阅读
森诺Alyson1 天前
前沿技术借鉴研讨-2025.12.23(荟萃分析/信号提取/轻量级模型)
论文阅读·人工智能·经验分享·论文笔记·论文讨论
有Li1 天前
MIRAGE:针对嘈杂环境鲁棒性的医学图像-文本预训练|文献速递-医疗影像分割与目标检测最新技术
论文阅读·人工智能·深度学习·计算机视觉·文献·医学生
EchoL、1 天前
【论文阅读】HiDDeN:Hiding Data With Deep Networks
论文阅读·笔记·机器学习