「小土堆」pytorch DataSet

「小土堆」pytorch DataSet

python 复制代码
from cProfile import label

from torch.utils.data import Dataset
from PIL import Image
import os

class MyData(Dataset):
    def __init__(self, root_dir, label_dir):

        # root_dir = "hymenoptera_data/train"
        # label_dir = "ants_img"
        # 这两个值是由后面的实例传递过来的
        self.root_dir = root_dir
        self.label_dir = label_dir

        # 将其整合
        self.path = os.path.join(root_dir, label_dir)

        # os.listdir() 方法用于返回指定的文件夹包含的文件或文件夹的名字的列表。
        self.img_name_path = os.listdir(self.path)

    def __getitem__(self, index):

        img_name = self.img_name_path[index]
        img_item_path = os.path.join(self.path, img_name)
        img = Image.open(img_item_path)

        label = self.label_dir
        # 返回的是图片和名字
        return img, label

    def __len__(self):
        return len(self.img_path)


ants_dataset = MyData('hymenoptera_data/train', 'ants_img')
# for item in ants_dataset.img_path:
#     print(item)
# print(ants_dataset.__len__())
# print(ants_dataset.__getitem__(0))


bees_dataset = MyData('hymenoptera_data/train', 'bees_img')
# print(bees_dataset.__len__())
# print(bees_dataset.__getitem__(0))
#
# print(len(ants_dataset+bees_dataset))

# ant_dataset中包含两个值,一个img一个label
img, label = ants_dataset[0]
img.show()

​ 视频中一开始是先写class的以至于一开始没有弄懂 'root_dir' 和 'label_dir' 是干什么的,在创建实例之后进行传参就可以很好的理解了,前者是指文件夹的路径,后者是文件夹下的分类,由于文件夹下面分别有两个类别的例子,所以分为root和label两类。

dataset提供了访问和处理大量自然语言处理(NLP)数据集的工具,简单来说就是对数据集中的图片进行操作的一个简单的库。

python 复制代码
 def __init__(self, root_dir, label_dir):

        # root_dir = "hymenoptera_data/train"
        # label_dir = "ants_img"
        # 这两个值是由后面的实例传递过来的
        self.root_dir = root_dir
        self.label_dir = label_dir

        # 将其整合
        self.path = os.path.join(root_dir, label_dir)

        # os.listdir() 方法用于返回指定的文件夹包含的文件或文件夹的名字的列表。
        self.img_name_path = os.listdir(self.path)

​ 上述代码中从上到下来看,首先是MyData库,其继承了Dataset这个类,第一个函数就是对数据的初始化,可以理解成java中的构造器一样的功能。

​ os.path.join()此函数是将路径整合在一起赋值给self.path

​ os.listdir()此函数是返回self.path路径下包含的文件夹或文件夹的名字的列表,重点是它返回的是一个列表,这个列表中包含了文件夹下面的文件的信息

python 复制代码
    def __getitem__(self, index):

        img_name = self.img_name_path[index]
        img_item_path = os.path.join(self.path, img_name)
        img = Image.open(img_item_path)

        label = self.label_dir
        # 返回的是图片和名字
        return img, label

    def __len__(self):
        return len(self.img_path)

​ getitem这个函数的功能主要是对列表中的图片信息进行整合和赋值

相关推荐
AgeClub1 天前
银发市场是第一站,家电巨头押注机器人做“智能家居入口”
人工智能·microsoft
耐达讯通信技术1 天前
惊爆!耐达讯自动化RS485转Profinet,电机连接的“逆天神器”?
运维·网络·人工智能·科技·网络协议·自动化
~央千澈~1 天前
AI助力软件UI概念设计:卓伊凡收到的客户设计图引发的思考
人工智能
悟乙己1 天前
使用 BayesFlow 神经网络简化贝叶斯推断的案例分享(二)
人工智能·深度学习·神经网络
二向箔reverse1 天前
从传统CNN到残差网络:用PyTorch实现更强大的图像分类模型
网络·pytorch·cnn
996终结者1 天前
软件使用教程(四):Jupyter Notebook 终极使用指南
ide·python·jupyter
THMAIL1 天前
机器学习从入门到精通 - Python环境搭建与Jupyter魔法:机器学习起航必备
linux·人工智能·python·算法·机器学习·docker·逻辑回归
Joy T1 天前
机器学习如何精准预测高值
人工智能·机器学习
黄小莫1 天前
【问题分析】paramiko 执行命令报 No such file or directory
linux·python
大熊背1 天前
白平衡分块统计数据为什么需要向下采样?
人工智能·计算机视觉·白平衡