Frequency-aware Feature Fusion for Dense Image Prediction 论文阅读

摘要:密集图像预测任务要求具有强类别信息和高分辨率精确空间边界细节的特征。为了实现这一点,现代分层模型通常利用特征融合,直接添加来自深层的上采样粗特征和来自较低层次的高分辨率特征。在本文中,我们观察到融合特征值在对象内的快速变化,由于高频特征的干扰导致类别内不一致。此外,融合特征中模糊的边界缺乏准确的高频,导致边界位移。基于这些观察结果,我们提出了频率感知特征融合(FreqFusion),集成了自适应低通滤波器(ALPF)发生器,偏移发生器和自适应高通滤波器(AHPF)发生器。ALPF生成器预测空间变化的低通滤波器,以衰减对象内的高频组件,减少上采样期间的类内不一致。偏移量发生器通过重采样将不一致的特征替换为更一致的特征来细化大的不一致特征和细边界,而AHPF发生器增强了下采样过程中丢失的高频详细边界信息。综合可视化和定量分析表明,FreqFusion有效地提高了特征一致性和清晰的目标边界。在各种密集预测任务中进行的大量实验证实了其有效性。该代码可在https://github.com/ying-fu/FreqFusion上公开获取。

索引术语:特征融合、特征上采样、密集预测、语义分割、目标检测、实例分割、全景分割

相关推荐
Bearnaise2 天前
GaussianDreamer: Fast Generation from Text to 3D Gaussians——点云论文阅读(11)
论文阅读·人工智能·python·深度学习·opencv·计算机视觉·3d
PD我是你的真爱粉2 天前
Quality minus junk论文阅读
论文阅读
regret~2 天前
【论文笔记】LoFLAT: Local Feature Matching using Focused Linear Attention Transformer
论文阅读·深度学习·transformer
Maker~3 天前
23、论文阅读:基于多分辨率特征学习的层次注意力聚合GAN水下图像增强
论文阅读·学习·生成对抗网络
Q_yt3 天前
【图像压缩感知】论文阅读:Content-Aware Scalable Deep Compressed Sensing
论文阅读
江海寄3 天前
[论文阅读] 异常检测 Deep Learning for Anomaly Detection: A Review(三)总结梳理-疑点记录
论文阅读·人工智能·深度学习·机器学习·计算机视觉·语言模型·视觉检测
江海寄3 天前
[论文阅读] 异常检测 Deep Learning for Anomaly Detection: A Review (四)三种分类方法对比
论文阅读·人工智能·深度学习·机器学习·计算机视觉·分类
代码太难敲啊喂3 天前
【Anomaly Detection论文阅读记录】Resnet网络与WideResNet网络
论文阅读·人工智能
YunTM3 天前
革新预测领域:频域融合时间序列预测,深度学习新篇章,科研涨点利器
论文阅读·人工智能·深度学习
Ayakanoinu3 天前
【论文阅读】Adversarial Examples for Handcrafted Features
论文阅读