基于ROS的激光雷达点云物体检测

环境

RTX 2060(后面关于算力)

ubuntu 18.04

ROS melodic (ubuntu 18.04安装ROS melodic可以参看我这篇文章ubuntu 18.04安装ROS系统)

CUDA 10.0

cudnn 7.6.5

caffe

cmake 3.18.0(不能低于3.12.2)

opencv 3.4.3

安装

ubuntu 18.04、ROS melodic 、CUDA 10.0、cudnn 7.6.5安装在此就不赘述。

1、caffe安装

安装依赖项

复制代码
sudo apt-get install  -y libopencv-dev
sudo apt-get install -y build-essential cmake git pkg-config
sudo apt-get install -y libprotobuf-dev libleveldb-dev libsnappy-dev libhdf5-serial-dev protobuf-compiler
sudo apt-get install -y liblapack-dev
sudo apt-get install -y libatlas-base-dev 
sudo apt-get install -y --no-install-recommends libboost-all-dev
sudo apt-get install -y libgflags-dev libgoogle-glog-dev liblmdb-dev
sudo apt-get install -y python-numpy python-scipy
sudo apt-get install -y python3-pip
sudo apt-get install -y python3-numpy python3-scipy

下载caffe开源软件项目(一定要在下载到home文件目录下

复制代码
cd ~
git clone https://gitee.com/hejuncheng1/caffe.git

进入caffe/python/目录下,执行下面的命令,下载依赖的软件 。

复制代码
cd caffe/python/
for req in $(cat requirements.txt); do pip3 install $req; done

下载到Downloads下

复制代码
git clone https://github.com/AbangLZU/cnn_seg_lidar.git

将下载下来源码里面的Makefile.config复制到caffe文件夹下

更改Makefile.config里面的部分内容

复制代码
改为(这部分算力根据自己显卡型号来哈):
CUDA_ARCH := -gencode arch=compute_30,code=sm_30 \
             -gencode arch=compute_35,code=sm_35 \
             -gencode arch=compute_50,code=sm_50 \
             -gencode arch=compute_52,code=sm_52 \
             -gencode arch=compute_60,code=sm_60 \
             -gencode arch=compute_61,code=sm_61 \
             -gencode arch=compute_61,code=compute_61

改为(根据自己OpenCV版本来,我的是3.2.0):

复制代码
#OPENCV_VERSION :=3
改为
OPENCV_VERSION :=3

编译caffe

复制代码
make -j8
make distribute

再编译本项目

首先要对源码做一部分修改(修改数据的topic,以便检测算法能读取数据):

修改**cnn_seg_lidar/src/lidar_cnn_seg_detect/nodes/cnn_segmentation.cpp**

修改完后就可以在项目文件夹cnn_seg_lidar下编译了:

复制代码
catkin_make

报错:

相关推荐
Blossom.1182 小时前
使用Python和Flask构建简单的机器学习API
人工智能·python·深度学习·目标检测·机器学习·数据挖掘·flask
蹦蹦跳跳真可爱5891 天前
Python----目标检测(使用YOLO 模型进行线程安全推理和流媒体源)
人工智能·python·yolo·目标检测·目标跟踪
Hero_HL1 天前
Towards Open World Object Detection概述(论文)
人工智能·目标检测·计算机视觉
audyxiao0011 天前
计算机视觉顶刊《International Journal of Computer Vision》2025年5月前沿热点可视化分析
图像处理·人工智能·opencv·目标检测·计算机视觉·大模型·视觉检测
中达瑞和-高光谱·多光谱1 天前
LCTF液晶可调谐滤波器在多光谱相机捕捉无人机目标检测中的作用
数码相机·目标检测·无人机
蹦蹦跳跳真可爱5891 天前
Python----目标检测(训练YOLOV8网络)
人工智能·python·yolo·目标检测
AI浩1 天前
【Block总结】EBlock,快速傅里叶变换(FFT)增强输入图像的幅度|即插即用|CVPR2025
人工智能·目标检测·计算机视觉
Blossom.1181 天前
使用Python和OpenCV实现图像识别与目标检测
人工智能·python·神经网络·opencv·安全·目标检测·机器学习
蹦蹦跳跳真可爱5891 天前
Python----目标检测(YOLO简介)
人工智能·python·yolo·目标检测·计算机视觉·目标跟踪
蹦蹦跳跳真可爱5891 天前
Python----目标检测(《YOLOv3:AnIncrementalImprovement》和YOLO-V3的原理与网络结构)
人工智能·python·深度学习·神经网络·yolo·目标检测·目标跟踪