基于ROS的激光雷达点云物体检测

环境

RTX 2060(后面关于算力)

ubuntu 18.04

ROS melodic (ubuntu 18.04安装ROS melodic可以参看我这篇文章ubuntu 18.04安装ROS系统)

CUDA 10.0

cudnn 7.6.5

caffe

cmake 3.18.0(不能低于3.12.2)

opencv 3.4.3

安装

ubuntu 18.04、ROS melodic 、CUDA 10.0、cudnn 7.6.5安装在此就不赘述。

1、caffe安装

安装依赖项

sudo apt-get install  -y libopencv-dev
sudo apt-get install -y build-essential cmake git pkg-config
sudo apt-get install -y libprotobuf-dev libleveldb-dev libsnappy-dev libhdf5-serial-dev protobuf-compiler
sudo apt-get install -y liblapack-dev
sudo apt-get install -y libatlas-base-dev 
sudo apt-get install -y --no-install-recommends libboost-all-dev
sudo apt-get install -y libgflags-dev libgoogle-glog-dev liblmdb-dev
sudo apt-get install -y python-numpy python-scipy
sudo apt-get install -y python3-pip
sudo apt-get install -y python3-numpy python3-scipy

下载caffe开源软件项目(一定要在下载到home文件目录下

cd ~
git clone https://gitee.com/hejuncheng1/caffe.git

进入caffe/python/目录下,执行下面的命令,下载依赖的软件 。

cd caffe/python/
for req in $(cat requirements.txt); do pip3 install $req; done

下载到Downloads下

git clone https://github.com/AbangLZU/cnn_seg_lidar.git

将下载下来源码里面的Makefile.config复制到caffe文件夹下

更改Makefile.config里面的部分内容

改为(这部分算力根据自己显卡型号来哈):
CUDA_ARCH := -gencode arch=compute_30,code=sm_30 \
             -gencode arch=compute_35,code=sm_35 \
             -gencode arch=compute_50,code=sm_50 \
             -gencode arch=compute_52,code=sm_52 \
             -gencode arch=compute_60,code=sm_60 \
             -gencode arch=compute_61,code=sm_61 \
             -gencode arch=compute_61,code=compute_61

改为(根据自己OpenCV版本来,我的是3.2.0):

#OPENCV_VERSION :=3
改为
OPENCV_VERSION :=3

编译caffe

make -j8
make distribute

再编译本项目

首先要对源码做一部分修改(修改数据的topic,以便检测算法能读取数据):

修改**cnn_seg_lidar/src/lidar_cnn_seg_detect/nodes/cnn_segmentation.cpp**

修改完后就可以在项目文件夹cnn_seg_lidar下编译了:

catkin_make

报错:

相关推荐
nice-wyh6 小时前
目标检测Anchor-based 与 Anchor-free
人工智能·目标检测·计算机视觉
Suyuoa9 小时前
PaddleDetection目标检测自定义训练
人工智能·目标检测·计算机视觉
Dmatteratall1 天前
目标检测热力图的生成代码(基于GridCam)生成的
人工智能·目标检测·计算机视觉
卧式纯绿1 天前
每天一篇《目标检测》文献(一)
人工智能·yolo·目标检测·计算机视觉·cnn
weixin_贾2 天前
2025最新Transformer模型及深度学习前沿技术应用
目标检测·大语言模型·图神经网络·深度学习模型·自编码·物理信息神经网络
_深海凉_2 天前
OmniParser技术分析(一)
深度学习·目标检测·ui·自动化
陈辛chenxin3 天前
【论文带读(3)】《Real-Time Flying Object Detection with YOLOv8》带读笔记翻译
人工智能·笔记·yolo·目标检测·计算机视觉
艾思科蓝 AiScholar3 天前
【南华大学机械工程学院主办,澳大利亚莫道克大学支持 | EI、Scoups检索】2025年智慧能源与控制工程国际学术会议(SECE 2025)
图像处理·人工智能·目标检测·计算机视觉·自动化·能源·制造
paradoxjun3 天前
RK3588部署YOLOv8(2):OpenCV和RGA实现模型前处理对比
人工智能·opencv·算法·yolo·目标检测·计算机视觉
量子-Alex3 天前
【目标检测】Efficient Feature Fusion for UAV Object Detection
人工智能·目标检测·计算机视觉