机器学习常用的评价指标原理和代码

最近面试的时候,很多面试官问道了我项目中的一些评价指标的算法和原理,我觉得这确实也是一个很重要的内容,所以趁这个机会综合起来一块复习一下,在刷力扣的时候也不能忘记项目最常用的内容嘛。当然还包括一些深度学习的例如我项目中目标检测和nlp算法的我会在之后更新。

总体代码我已经放入代码库,大家自取哦,希望能给大家带来一些帮助。


一、回归任务评价指标

均方误差 (MSE)

原理:衡量预测值与真实值之间差异的平方的平均值,越小表示模型越准确。

公式:

根均方误差 (RMSE)

原理:RMSE是MSE的平方根,提供与数据原始单位相同的误差度量。

公式

平均绝对误差 (MAE)

原理:计算所有预测误差的绝对值并取平均,反映预测的准确性。

公式

R² (决定系数)

原理:表示模型解释的变异比例,值在0到1之间,越接近1表示模型效果越好。

公式

为残差平方和为总平方和

平均绝对百分比误差 (MAPE)

原理:计算误差的绝对值与真实值的比率的平均值,反映相对误差。

公式

最大误差 (Max Error)

原理:表示预测值与真实值之间的最大绝对误差,反映模型在最坏情况下的预测能力。

公式

二、分类任务评价指标

准确率 (Accuracy)

原理:正确预测的样本数量占总样本数量的比例。

公式

其中,TP为真阳性,TN为真阴性。

精确率 (Precision)

原理:预测为正类的样本中,真正为正类的比例。

公式

召回率 (Recall)

原理:实际为正类的样本中,正确预测为正类的比例。

公式

F1-score

原理:精确率和召回率的调和平均数,综合考虑模型的准确性和完整性。

公式

ROC曲线和AUC

原理:ROC曲线通过绘制真正率(TPR)和假正率(FPR)之间的关系来评估模型性能。AUC则表示曲线下面积,越大表示模型性能越好。

公式

TPR: (TPR(真正率)和召回率(Recall)在二分类任务中是同义词,通常可以互换使用。它们都表示模型在所有实际为正类的样本中,正确预测为正类的比例。)

FPR:

以上所有的机器学习相关的代码我都传到了我的一个仓库里,各位大佬有需求的话可以去我的仓库查看感谢感谢

相关推荐
2501_924794901 分钟前
企业AI转型为何难?——从“不敢用”到“用得稳”的路径重构
大数据·人工智能·重构
Tezign_space13 分钟前
小红书内容运营工具怎么选?专业视角拆解优质工具核心标准
大数据·人工智能·内容运营
老马啸西风15 分钟前
成熟企业级技术平台 MVE-010-跳板机 / 堡垒机(Jump Server / Bastion Host)
人工智能·深度学习·算法·职场和发展
康实训15 分钟前
养老实训室建设标准指南
大数据·人工智能·实训室·养老实训室·实训室建设
袖手蹲16 分钟前
Arduino UNO Q 烘托圣诞节气氛
人工智能·单片机·嵌入式硬件
wjykp23 分钟前
part 3神经网络的学习
人工智能·神经网络·学习
core51231 分钟前
【硬核测评】Gemini 3 编程能力全面进化:不仅仅是 Copilot,更是你的 AI 架构师
人工智能·编程·copilot
jieshenai32 分钟前
llamafactory SFT 从断点恢复训练
人工智能
Jerryhut32 分钟前
sklearn函数总结九— 朴素贝叶斯
机器学习·scikit-learn·概率论·sklearn
微风企35 分钟前
杭州上城区CID青年企业家创新学院启航!微风企助力AI建设与青年创业成长
人工智能