机器学习常用的评价指标原理和代码

最近面试的时候,很多面试官问道了我项目中的一些评价指标的算法和原理,我觉得这确实也是一个很重要的内容,所以趁这个机会综合起来一块复习一下,在刷力扣的时候也不能忘记项目最常用的内容嘛。当然还包括一些深度学习的例如我项目中目标检测和nlp算法的我会在之后更新。

总体代码我已经放入代码库,大家自取哦,希望能给大家带来一些帮助。


一、回归任务评价指标

均方误差 (MSE)

原理:衡量预测值与真实值之间差异的平方的平均值,越小表示模型越准确。

公式:

根均方误差 (RMSE)

原理:RMSE是MSE的平方根,提供与数据原始单位相同的误差度量。

公式

平均绝对误差 (MAE)

原理:计算所有预测误差的绝对值并取平均,反映预测的准确性。

公式

R² (决定系数)

原理:表示模型解释的变异比例,值在0到1之间,越接近1表示模型效果越好。

公式

为残差平方和为总平方和

平均绝对百分比误差 (MAPE)

原理:计算误差的绝对值与真实值的比率的平均值,反映相对误差。

公式

最大误差 (Max Error)

原理:表示预测值与真实值之间的最大绝对误差,反映模型在最坏情况下的预测能力。

公式

二、分类任务评价指标

准确率 (Accuracy)

原理:正确预测的样本数量占总样本数量的比例。

公式

其中,TP为真阳性,TN为真阴性。

精确率 (Precision)

原理:预测为正类的样本中,真正为正类的比例。

公式

召回率 (Recall)

原理:实际为正类的样本中,正确预测为正类的比例。

公式

F1-score

原理:精确率和召回率的调和平均数,综合考虑模型的准确性和完整性。

公式

ROC曲线和AUC

原理:ROC曲线通过绘制真正率(TPR)和假正率(FPR)之间的关系来评估模型性能。AUC则表示曲线下面积,越大表示模型性能越好。

公式

TPR: (TPR(真正率)和召回率(Recall)在二分类任务中是同义词,通常可以互换使用。它们都表示模型在所有实际为正类的样本中,正确预测为正类的比例。)

FPR:

以上所有的机器学习相关的代码我都传到了我的一个仓库里,各位大佬有需求的话可以去我的仓库查看感谢感谢

相关推荐
AI_Auto11 小时前
智能制造 - 人工智能、隐私保护、信息安全
人工智能·制造
yLDeveloper11 小时前
一只菜鸟学深度学习的日记:入门卷积
机器学习·dive into deep learning
一只乔哇噻11 小时前
java后端工程师+AI大模型开发进修ing(研一版‖day60)
java·开发语言·人工智能·学习·语言模型
千里码aicood11 小时前
计算机大数据、人工智能与智能系统开发定制开发
大数据·人工智能·深度学习·决策树·机器学习·森林树
币圈菜头11 小时前
【空投速递】GAEA项目解析:首个集成人类情感数据的去中心化AI训练网络
人工智能·web3·去中心化·区块链
Dcs13 小时前
你的 Prompt 都该重写?
人工智能·ai编程
木卫二号Coding13 小时前
第五十三篇-Ollama+V100+Qwen3:4B-性能
人工智能
飞哥数智坊13 小时前
AI 不只是聊天:聊聊我最近在做的新方向
人工智能
学生高德13 小时前
小模型结合大模型的加速方法关键笔记
人工智能·深度学习·机器学习
蓝耘智算14 小时前
GPU算力租赁与算力云平台选型指南:从需求匹配到成本优化的实战思路
大数据·人工智能·ai·gpu算力·蓝耘