机器学习常用的评价指标原理和代码

最近面试的时候,很多面试官问道了我项目中的一些评价指标的算法和原理,我觉得这确实也是一个很重要的内容,所以趁这个机会综合起来一块复习一下,在刷力扣的时候也不能忘记项目最常用的内容嘛。当然还包括一些深度学习的例如我项目中目标检测和nlp算法的我会在之后更新。

总体代码我已经放入代码库,大家自取哦,希望能给大家带来一些帮助。


一、回归任务评价指标

均方误差 (MSE)

原理:衡量预测值与真实值之间差异的平方的平均值,越小表示模型越准确。

公式:

根均方误差 (RMSE)

原理:RMSE是MSE的平方根,提供与数据原始单位相同的误差度量。

公式

平均绝对误差 (MAE)

原理:计算所有预测误差的绝对值并取平均,反映预测的准确性。

公式

R² (决定系数)

原理:表示模型解释的变异比例,值在0到1之间,越接近1表示模型效果越好。

公式

为残差平方和为总平方和

平均绝对百分比误差 (MAPE)

原理:计算误差的绝对值与真实值的比率的平均值,反映相对误差。

公式

最大误差 (Max Error)

原理:表示预测值与真实值之间的最大绝对误差,反映模型在最坏情况下的预测能力。

公式

二、分类任务评价指标

准确率 (Accuracy)

原理:正确预测的样本数量占总样本数量的比例。

公式

其中,TP为真阳性,TN为真阴性。

精确率 (Precision)

原理:预测为正类的样本中,真正为正类的比例。

公式

召回率 (Recall)

原理:实际为正类的样本中,正确预测为正类的比例。

公式

F1-score

原理:精确率和召回率的调和平均数,综合考虑模型的准确性和完整性。

公式

ROC曲线和AUC

原理:ROC曲线通过绘制真正率(TPR)和假正率(FPR)之间的关系来评估模型性能。AUC则表示曲线下面积,越大表示模型性能越好。

公式

TPR: (TPR(真正率)和召回率(Recall)在二分类任务中是同义词,通常可以互换使用。它们都表示模型在所有实际为正类的样本中,正确预测为正类的比例。)

FPR:

以上所有的机器学习相关的代码我都传到了我的一个仓库里,各位大佬有需求的话可以去我的仓库查看感谢感谢

相关推荐
迅易科技44 分钟前
借助腾讯云质检平台的新范式,做工业制造企业质检的“AI慧眼”
人工智能·视觉检测·制造
古希腊掌管学习的神2 小时前
[机器学习]XGBoost(3)——确定树的结构
人工智能·机器学习
ZHOU_WUYI2 小时前
4.metagpt中的软件公司智能体 (ProjectManager 角色)
人工智能·metagpt
靴子学长3 小时前
基于字节大模型的论文翻译(含免费源码)
人工智能·深度学习·nlp
AI_NEW_COME4 小时前
知识库管理系统可扩展性深度测评
人工智能
海棠AI实验室4 小时前
AI的进阶之路:从机器学习到深度学习的演变(一)
人工智能·深度学习·机器学习
hunteritself4 小时前
AI Weekly『12月16-22日』:OpenAI公布o3,谷歌发布首个推理模型,GitHub Copilot免费版上线!
人工智能·gpt·chatgpt·github·openai·copilot
IT古董5 小时前
【机器学习】机器学习的基本分类-强化学习-策略梯度(Policy Gradient,PG)
人工智能·机器学习·分类
centurysee5 小时前
【最佳实践】Anthropic:Agentic系统实践案例
人工智能
mahuifa5 小时前
混合开发环境---使用编程AI辅助开发Qt
人工智能·vscode·qt·qtcreator·编程ai