【数学分析笔记】第4章第4节 复合函数求导法则及其应用(1)

4. 微分

4.4 复合函数求导法则及其应用

4.4.1 复合函数求导法则

【定理4.4.1】 u = g ( x ) u=g(x) u=g(x)在 x = x 0 x=x_0 x=x0可导, g ( x 0 ) = u ( 0 ) g(x_0)=u(0) g(x0)=u(0), y = f ( u ) y=f(u) y=f(u)在 u = u 0 u=u_0 u=u0可导,则 y = f ( g ( x ) ) y=f(g(x)) y=f(g(x))在 x = x 0 x=x_0 x=x0可导且 [ f ( g ( x ) ) ] x = x 0 ′ = f ′ ( u 0 ) g ′ ( x 0 ) [f(g(x))]'_{x=x_0}=f'(u_0)g'(x_0) [f(g(x))]x=x0′=f′(u0)g′(x0)

一个有缺陷的证明 !!!】 g ( x 0 + Δ x ) − g ( x 0 ) = Δ u g(x_0+\Delta x)-g(x_0)=\Delta u g(x0+Δx)−g(x0)=Δu, Δ y = f ( u 0 + Δ u ) − f ( u 0 ) \Delta y=f(u_0+\Delta u)-f(u_0) Δy=f(u0+Δu)−f(u0), [ f ( g ( x ) ) ] x = x 0 ′ = lim ⁡ Δ x → 0 Δ y Δ x [f(g(x))]'{x=x_0}=\lim\limits{\Delta x\to 0}\frac{\Delta y}{\Delta x} [f(g(x))]x=x0′=Δx→0limΔxΔy

当 Δ → 0 , Δ u → 0 \Delta \to 0,\Delta u \to 0 Δ→0,Δu→0,则:

f ( g ( x ) ) \] x = x 0 ′ = lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 ( Δ y Δ u ⋅ Δ u Δ x ) = lim ⁡ Δ u → 0 Δ y Δ u ⋅ lim ⁡ Δ x → 0 Δ u Δ x = f ′ ( u 0 ) g ′ ( x 0 ) \[f(g(x))\]'_{x=x_0}=\\lim\\limits_{\\Delta x\\to 0}\\frac{\\Delta y}{\\Delta x}=\\lim\\limits_{\\Delta x\\to 0}(\\frac{\\Delta y}{\\Delta u}\\cdot\\frac{\\Delta u}{\\Delta x})=\\lim\\limits_{\\Delta u\\to 0}\\frac{\\Delta y}{\\Delta u}\\cdot\\lim\\limits_{\\Delta x\\to 0}\\frac{\\Delta u}{\\Delta x}=f'(u_0)g'(x_0) \[f(g(x))\]x=x0′=Δx→0limΔxΔy=Δx→0lim(ΔuΔy⋅ΔxΔu)=Δu→0limΔuΔy⋅Δx→0limΔxΔu=f′(u0)g′(x0) 【问题所在】 Δ u → 0 , Δ u ≠ 0 \\Delta u\\to 0,\\Delta u\\ne 0 Δu→0,Δu=0,但是 lim ⁡ Δ u → 0 Δ y Δ u \\lim\\limits_{\\Delta u\\to 0}\\frac{\\Delta y}{\\Delta u} Δu→0limΔuΔy中, Δ u \\Delta u Δu可能为0,比如有下面的反例: u ( x ) = { x 2 sin ⁡ 1 x 0 u(x)=\\left\\{\\begin{array}{c} x\^{2} \\sin \\frac{1}{x} \\\\ 0 \\end{array}\\right. u(x)={x2sinx10,如果求0点的复合函数导数,则 Δ u = u ( 0 + Δ x ) − u ( 0 ) = ( Δ x ) 2 sin ⁡ 1 Δ x \\Delta u =u(0+\\Delta x)-u(0)=(\\Delta x)\^2\\sin\\frac{1}{\\Delta x} Δu=u(0+Δx)−u(0)=(Δx)2sinΔx1 则 u ′ ( 0 ) = lim ⁡ Δ x → 0 ( Δ x ) 2 sin ⁡ 1 Δ x Δ x = 0 u'(0)=\\lim\\limits_{\\Delta x\\to 0}\\frac{(\\Delta x)\^2\\sin\\frac{1}{\\Delta x}}{\\Delta x}=0 u′(0)=Δx→0limΔx(Δx)2sinΔx1=0,根据海涅定理,取 Δ x n = 1 n π ≠ 0 \\Delta x_n=\\frac{1}{n\\pi}\\ne 0 Δxn=nπ1=0,但是此时 Δ u = 1 n 2 π 2 sin ⁡ ( n π ) = 0 \\Delta u=\\frac{1}{n\^2\\pi\^2}\\sin(n\\pi)=0 Δu=n2π21sin(nπ)=0,这就出现了 Δ u = 0 \\Delta u = 0 Δu=0的情况,如果这个函数和别的函数 f ( u ) f(u) f(u)复合,则在计算 lim ⁡ Δ u → 0 Δ y Δ u \\lim\\limits_{\\Delta u\\to 0}\\frac{\\Delta y}{\\Delta u} Δu→0limΔuΔy时,会出现分母确确实实是真0而不是趋近于0的情况,所以不能这样证明。 【更改】由 f ( u ) f(u) f(u)可导,则 f ( u ) f(u) f(u)可微, Δ y = f ( u 0 + Δ u ) − f ( u 0 ) = f ′ ( u 0 ) Δ u + o ( Δ u ) \\Delta y=f(u_0+\\Delta u)-f(u_0)=f'(u_0)\\Delta u+o(\\Delta u) Δy=f(u0+Δu)−f(u0)=f′(u0)Δu+o(Δu) 令 α = o ( Δ u ) Δ u , lim ⁡ Δ u → 0 , Δ u ≠ 0 α = 0 \\alpha = \\frac{o(\\Delta u)}{\\Delta u},\\lim\\limits_{\\Delta u\\to 0,\\Delta u \\ne 0}\\alpha = 0 α=Δuo(Δu),Δu→0,Δu=0limα=0 则 Δ y = f ( u 0 + Δ u ) − f ( u 0 ) = f ′ ( u 0 ) Δ u + α Δ u ( Δ u → 0 ) \\Delta y=f(u_0+\\Delta u)-f(u_0)=f'(u_0)\\Delta u+\\alpha \\Delta u(\\Delta u \\to 0) Δy=f(u0+Δu)−f(u0)=f′(u0)Δu+αΔu(Δu→0) 当 Δ u = 0 , α = 0 \\Delta u = 0,\\alpha = 0 Δu=0,α=0,对上式 Δ y = f ′ ( u 0 ) Δ u + α Δ u \\Delta y=f'(u_0)\\Delta u+\\alpha\\Delta u Δy=f′(u0)Δu+αΔu也成立 Δ y Δ x = f ′ ( u 0 ) Δ u Δ x + α Δ u Δ x \\frac{\\Delta y}{\\Delta x}=f'(u_0)\\frac{\\Delta u}{\\Delta x}+\\alpha\\frac{\\Delta u}{\\Delta x} ΔxΔy=f′(u0)ΔxΔu+αΔxΔu 令 Δ x → 0 ⇒ Δ u → 0 ( Δ u = 0 或 Δ u ≠ 0 ) ⇒ lim ⁡ Δ u → 0 α = 0 \\Delta x\\to 0\\Rightarrow\\Delta u\\to 0(\\Delta u = 0或\\Delta u \\ne 0)\\Rightarrow\\lim\\limits_{\\Delta u\\to 0}\\alpha = 0 Δx→0⇒Δu→0(Δu=0或Δu=0)⇒Δu→0limα=0 lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 f ′ ( u 0 ) Δ u Δ x + lim ⁡ Δ x → 0 α Δ u Δ x = f ′ ( u 0 ) g ′ ( x 0 ) + 0 × g ′ ( x 0 ) = f ′ ( u 0 ) g ′ ( x 0 ) \\lim\\limits_{\\Delta x\\to 0}\\frac{\\Delta y}{\\Delta x}=\\lim\\limits_{\\Delta x\\to 0}f'(u_0)\\frac{\\Delta u}{\\Delta x}+\\lim\\limits_{\\Delta x\\to 0}\\alpha\\frac{\\Delta u}{\\Delta x}=f'(u_0)g'(x_0)+0\\times g'(x_0)=f'(u_0)g'(x_0) Δx→0limΔxΔy=Δx→0limf′(u0)ΔxΔu+Δx→0limαΔxΔu=f′(u0)g′(x0)+0×g′(x0)=f′(u0)g′(x0) 【复合函数链式求导法则】 y = f ( u ) , u = g ( x ) , y = f ( g ( x ) ) = f ∘ g ( x ) y=f(u),u=g(x),y=f(g(x))=f\\circ g(x) y=f(u),u=g(x),y=f(g(x))=f∘g(x) \[ f ( g ( x ) ) \] ′ = d y d x = d y d u ⋅ d u d x \[f(g(x))\]'=\\frac{dy}{dx}=\\frac{dy}{du}\\cdot\\frac{du}{dx} \[f(g(x))\]′=dxdy=dudy⋅dxdu 【例】 y = f ( u ) , u = g ( x ) , x = h ( t ) , d y d t = d y d u ⋅ d u d x ⋅ d x d t = f ′ ( u 0 ) g ′ ( x 0 ) h ′ ( t 0 ) y=f(u),u=g(x),x=h(t),\\frac{dy}{dt}=\\frac{dy}{du}\\cdot\\frac{du}{dx}\\cdot\\frac{dx}{dt}=f'(u_0)g'(x_0)h'(t_0) y=f(u),u=g(x),x=h(t),dtdy=dudy⋅dxdu⋅dtdx=f′(u0)g′(x0)h′(t0) 【例4.4.1】 y = x α = e α ln ⁡ x , y = e u , u = α ln ⁡ x , d y d x = ( e u ) ′ ( α ln ⁡ x ) ′ = e u ⋅ α x = x α ⋅ α x = α x α − 1 y=x\^{\\alpha}=e\^{\\alpha \\ln x},y=e\^u,u=\\alpha \\ln x,\\frac{dy}{dx}=(e\^u)'(\\alpha \\ln x)'=e\^u\\cdot\\frac{\\alpha}{x}=x\^{\\alpha}\\cdot\\frac{\\alpha}{x}=\\alpha x\^{\\alpha - 1} y=xα=eαlnx,y=eu,u=αlnx,dxdy=(eu)′(αlnx)′=eu⋅xα=xα⋅xα=αxα−1 【例4.4.2】 y = e cos ⁡ x y=e\^{\\cos x} y=ecosx,求 y ′ y' y′ 【解】 d y d x = ( e u ) ′ ( cos ⁡ x ) ′ = − e cos ⁡ x sin ⁡ x \\frac{dy}{dx}=(e\^u)'(\\cos x)'=-e\^{\\cos x}\\sin x dxdy=(eu)′(cosx)′=−ecosxsinx 【例】求 ( 1 + x 2 ) ′ (\\sqrt{1+x\^2})' (1+x2 )′ 【解】 ( 1 + x 2 ) ′ = 1 2 1 + x 2 ⋅ 2 x = x 1 + x 2 (\\sqrt{1+x\^2})'=\\frac{1}{2\\sqrt{1+x\^2}}\\cdot2x=\\frac{x}{\\sqrt{1+x\^2}} (1+x2 )′=21+x2 1⋅2x=1+x2 x

相关推荐
Yawesh_best6 小时前
告别系统壁垒!WSL+cpolar 让跨平台开发效率翻倍
运维·服务器·数据库·笔记·web安全
Ccjf酷儿8 小时前
操作系统 蒋炎岩 3.硬件视角的操作系统
笔记
习习.y8 小时前
python笔记梳理以及一些题目整理
开发语言·笔记·python
在逃热干面9 小时前
(笔记)自定义 systemd 服务
笔记
DKPT10 小时前
ZGC和G1收集器相比哪个更好?
java·jvm·笔记·学习·spring
QT 小鲜肉12 小时前
【孙子兵法之上篇】001. 孙子兵法·计篇
笔记·读书·孙子兵法
星轨初途13 小时前
数据结构排序算法详解(5)——非比较函数:计数排序(鸽巢原理)及排序算法复杂度和稳定性分析
c语言·开发语言·数据结构·经验分享·笔记·算法·排序算法
QT 小鲜肉13 小时前
【孙子兵法之上篇】001. 孙子兵法·计篇深度解析与现代应用
笔记·读书·孙子兵法
love530love16 小时前
【笔记】ComfUI RIFEInterpolation 节点缺失问题(cupy CUDA 安装)解决方案
人工智能·windows·笔记·python·插件·comfyui
愚戏师16 小时前
MySQL 数据导出
数据库·笔记·mysql