4. 微分
4.4 复合函数求导法则及其应用
4.4.1 复合函数求导法则
【定理4.4.1】 u = g ( x ) u=g(x) u=g(x)在 x = x 0 x=x_0 x=x0可导, g ( x 0 ) = u ( 0 ) g(x_0)=u(0) g(x0)=u(0), y = f ( u ) y=f(u) y=f(u)在 u = u 0 u=u_0 u=u0可导,则 y = f ( g ( x ) ) y=f(g(x)) y=f(g(x))在 x = x 0 x=x_0 x=x0可导且 [ f ( g ( x ) ) ] x = x 0 ′ = f ′ ( u 0 ) g ′ ( x 0 ) [f(g(x))]'_{x=x_0}=f'(u_0)g'(x_0) [f(g(x))]x=x0′=f′(u0)g′(x0)
【一个有缺陷的证明 !!!】 g ( x 0 + Δ x ) − g ( x 0 ) = Δ u g(x_0+\Delta x)-g(x_0)=\Delta u g(x0+Δx)−g(x0)=Δu, Δ y = f ( u 0 + Δ u ) − f ( u 0 ) \Delta y=f(u_0+\Delta u)-f(u_0) Δy=f(u0+Δu)−f(u0), [ f ( g ( x ) ) ] x = x 0 ′ = lim Δ x → 0 Δ y Δ x [f(g(x))]'{x=x_0}=\lim\limits{\Delta x\to 0}\frac{\Delta y}{\Delta x} [f(g(x))]x=x0′=Δx→0limΔxΔy
当 Δ → 0 , Δ u → 0 \Delta \to 0,\Delta u \to 0 Δ→0,Δu→0,则:
f ( g ( x ) ) \] x = x 0 ′ = lim Δ x → 0 Δ y Δ x = lim Δ x → 0 ( Δ y Δ u ⋅ Δ u Δ x ) = lim Δ u → 0 Δ y Δ u ⋅ lim Δ x → 0 Δ u Δ x = f ′ ( u 0 ) g ′ ( x 0 ) \[f(g(x))\]'_{x=x_0}=\\lim\\limits_{\\Delta x\\to 0}\\frac{\\Delta y}{\\Delta x}=\\lim\\limits_{\\Delta x\\to 0}(\\frac{\\Delta y}{\\Delta u}\\cdot\\frac{\\Delta u}{\\Delta x})=\\lim\\limits_{\\Delta u\\to 0}\\frac{\\Delta y}{\\Delta u}\\cdot\\lim\\limits_{\\Delta x\\to 0}\\frac{\\Delta u}{\\Delta x}=f'(u_0)g'(x_0) \[f(g(x))\]x=x0′=Δx→0limΔxΔy=Δx→0lim(ΔuΔy⋅ΔxΔu)=Δu→0limΔuΔy⋅Δx→0limΔxΔu=f′(u0)g′(x0) 【问题所在】 Δ u → 0 , Δ u ≠ 0 \\Delta u\\to 0,\\Delta u\\ne 0 Δu→0,Δu=0,但是 lim Δ u → 0 Δ y Δ u \\lim\\limits_{\\Delta u\\to 0}\\frac{\\Delta y}{\\Delta u} Δu→0limΔuΔy中, Δ u \\Delta u Δu可能为0,比如有下面的反例: u ( x ) = { x 2 sin 1 x 0 u(x)=\\left\\{\\begin{array}{c} x\^{2} \\sin \\frac{1}{x} \\\\ 0 \\end{array}\\right. u(x)={x2sinx10,如果求0点的复合函数导数,则 Δ u = u ( 0 + Δ x ) − u ( 0 ) = ( Δ x ) 2 sin 1 Δ x \\Delta u =u(0+\\Delta x)-u(0)=(\\Delta x)\^2\\sin\\frac{1}{\\Delta x} Δu=u(0+Δx)−u(0)=(Δx)2sinΔx1 则 u ′ ( 0 ) = lim Δ x → 0 ( Δ x ) 2 sin 1 Δ x Δ x = 0 u'(0)=\\lim\\limits_{\\Delta x\\to 0}\\frac{(\\Delta x)\^2\\sin\\frac{1}{\\Delta x}}{\\Delta x}=0 u′(0)=Δx→0limΔx(Δx)2sinΔx1=0,根据海涅定理,取 Δ x n = 1 n π ≠ 0 \\Delta x_n=\\frac{1}{n\\pi}\\ne 0 Δxn=nπ1=0,但是此时 Δ u = 1 n 2 π 2 sin ( n π ) = 0 \\Delta u=\\frac{1}{n\^2\\pi\^2}\\sin(n\\pi)=0 Δu=n2π21sin(nπ)=0,这就出现了 Δ u = 0 \\Delta u = 0 Δu=0的情况,如果这个函数和别的函数 f ( u ) f(u) f(u)复合,则在计算 lim Δ u → 0 Δ y Δ u \\lim\\limits_{\\Delta u\\to 0}\\frac{\\Delta y}{\\Delta u} Δu→0limΔuΔy时,会出现分母确确实实是真0而不是趋近于0的情况,所以不能这样证明。 【更改】由 f ( u ) f(u) f(u)可导,则 f ( u ) f(u) f(u)可微, Δ y = f ( u 0 + Δ u ) − f ( u 0 ) = f ′ ( u 0 ) Δ u + o ( Δ u ) \\Delta y=f(u_0+\\Delta u)-f(u_0)=f'(u_0)\\Delta u+o(\\Delta u) Δy=f(u0+Δu)−f(u0)=f′(u0)Δu+o(Δu) 令 α = o ( Δ u ) Δ u , lim Δ u → 0 , Δ u ≠ 0 α = 0 \\alpha = \\frac{o(\\Delta u)}{\\Delta u},\\lim\\limits_{\\Delta u\\to 0,\\Delta u \\ne 0}\\alpha = 0 α=Δuo(Δu),Δu→0,Δu=0limα=0 则 Δ y = f ( u 0 + Δ u ) − f ( u 0 ) = f ′ ( u 0 ) Δ u + α Δ u ( Δ u → 0 ) \\Delta y=f(u_0+\\Delta u)-f(u_0)=f'(u_0)\\Delta u+\\alpha \\Delta u(\\Delta u \\to 0) Δy=f(u0+Δu)−f(u0)=f′(u0)Δu+αΔu(Δu→0) 当 Δ u = 0 , α = 0 \\Delta u = 0,\\alpha = 0 Δu=0,α=0,对上式 Δ y = f ′ ( u 0 ) Δ u + α Δ u \\Delta y=f'(u_0)\\Delta u+\\alpha\\Delta u Δy=f′(u0)Δu+αΔu也成立 Δ y Δ x = f ′ ( u 0 ) Δ u Δ x + α Δ u Δ x \\frac{\\Delta y}{\\Delta x}=f'(u_0)\\frac{\\Delta u}{\\Delta x}+\\alpha\\frac{\\Delta u}{\\Delta x} ΔxΔy=f′(u0)ΔxΔu+αΔxΔu 令 Δ x → 0 ⇒ Δ u → 0 ( Δ u = 0 或 Δ u ≠ 0 ) ⇒ lim Δ u → 0 α = 0 \\Delta x\\to 0\\Rightarrow\\Delta u\\to 0(\\Delta u = 0或\\Delta u \\ne 0)\\Rightarrow\\lim\\limits_{\\Delta u\\to 0}\\alpha = 0 Δx→0⇒Δu→0(Δu=0或Δu=0)⇒Δu→0limα=0 lim Δ x → 0 Δ y Δ x = lim Δ x → 0 f ′ ( u 0 ) Δ u Δ x + lim Δ x → 0 α Δ u Δ x = f ′ ( u 0 ) g ′ ( x 0 ) + 0 × g ′ ( x 0 ) = f ′ ( u 0 ) g ′ ( x 0 ) \\lim\\limits_{\\Delta x\\to 0}\\frac{\\Delta y}{\\Delta x}=\\lim\\limits_{\\Delta x\\to 0}f'(u_0)\\frac{\\Delta u}{\\Delta x}+\\lim\\limits_{\\Delta x\\to 0}\\alpha\\frac{\\Delta u}{\\Delta x}=f'(u_0)g'(x_0)+0\\times g'(x_0)=f'(u_0)g'(x_0) Δx→0limΔxΔy=Δx→0limf′(u0)ΔxΔu+Δx→0limαΔxΔu=f′(u0)g′(x0)+0×g′(x0)=f′(u0)g′(x0) 【复合函数链式求导法则】 y = f ( u ) , u = g ( x ) , y = f ( g ( x ) ) = f ∘ g ( x ) y=f(u),u=g(x),y=f(g(x))=f\\circ g(x) y=f(u),u=g(x),y=f(g(x))=f∘g(x) \[ f ( g ( x ) ) \] ′ = d y d x = d y d u ⋅ d u d x \[f(g(x))\]'=\\frac{dy}{dx}=\\frac{dy}{du}\\cdot\\frac{du}{dx} \[f(g(x))\]′=dxdy=dudy⋅dxdu 【例】 y = f ( u ) , u = g ( x ) , x = h ( t ) , d y d t = d y d u ⋅ d u d x ⋅ d x d t = f ′ ( u 0 ) g ′ ( x 0 ) h ′ ( t 0 ) y=f(u),u=g(x),x=h(t),\\frac{dy}{dt}=\\frac{dy}{du}\\cdot\\frac{du}{dx}\\cdot\\frac{dx}{dt}=f'(u_0)g'(x_0)h'(t_0) y=f(u),u=g(x),x=h(t),dtdy=dudy⋅dxdu⋅dtdx=f′(u0)g′(x0)h′(t0) 【例4.4.1】 y = x α = e α ln x , y = e u , u = α ln x , d y d x = ( e u ) ′ ( α ln x ) ′ = e u ⋅ α x = x α ⋅ α x = α x α − 1 y=x\^{\\alpha}=e\^{\\alpha \\ln x},y=e\^u,u=\\alpha \\ln x,\\frac{dy}{dx}=(e\^u)'(\\alpha \\ln x)'=e\^u\\cdot\\frac{\\alpha}{x}=x\^{\\alpha}\\cdot\\frac{\\alpha}{x}=\\alpha x\^{\\alpha - 1} y=xα=eαlnx,y=eu,u=αlnx,dxdy=(eu)′(αlnx)′=eu⋅xα=xα⋅xα=αxα−1 【例4.4.2】 y = e cos x y=e\^{\\cos x} y=ecosx,求 y ′ y' y′ 【解】 d y d x = ( e u ) ′ ( cos x ) ′ = − e cos x sin x \\frac{dy}{dx}=(e\^u)'(\\cos x)'=-e\^{\\cos x}\\sin x dxdy=(eu)′(cosx)′=−ecosxsinx 【例】求 ( 1 + x 2 ) ′ (\\sqrt{1+x\^2})' (1+x2 )′ 【解】 ( 1 + x 2 ) ′ = 1 2 1 + x 2 ⋅ 2 x = x 1 + x 2 (\\sqrt{1+x\^2})'=\\frac{1}{2\\sqrt{1+x\^2}}\\cdot2x=\\frac{x}{\\sqrt{1+x\^2}} (1+x2 )′=21+x2 1⋅2x=1+x2 x