c# 线性回归和多项式拟合

1. 线性回归

公式: 线性回归的目标是拟合一条直线,形式为: y=mx+by=mx+b 其中:

  • yy 是因变量(目标值)
  • xx 是自变量(特征值)
  • mm 是斜率(slope)
  • bb 是截距(intercept)

优点:

  • 简单易懂
  • 计算效率高

缺点:

  • 只能拟合线性关系
  • 对于非线性关系的适应能力差

C# 线性回归示例代码

复制代码
using MathNet.Numerics;
using MathNet.Numerics.LinearRegression;

class Program
{
    static void Main()
    {
        double[] x = { 1, 2, 3, 4, 5 };
        double[] y = { 2, 4, 6, 8, 10 };

        // 进行线性回归
        var (slope, intercept) = SimpleRegression.Fit(x, y);

        Console.WriteLine($"拟合方程: y = {intercept} + {slope}x");
    }
}

2. 多项式拟合

公式: 多项式拟合的目标是拟合一个多项式,形式为: y=anxn+an−1xn−1+...+a1x+a0y=an​xn+an−1​xn−1+...+a1​x+a0​ 其中:

  • an,an−1,...,a0an,an−1,...,a0 是多项式的系数
  • nn 是多项式的最高次数

优点:

  • 能拟合更复杂的非线性关系
  • 通过增加多项式的次数,可以提高拟合的灵活性

缺点:

  • 过拟合的风险较高(尤其是在高次多项式时)
  • 计算复杂度较高

C# 多项式拟合示例代码

复制代码
using MathNet.Numerics;
using MathNet.Numerics.LinearRegression;

class Program
{
    static void Main()
    {
        double[] x = { 1, 2, 3, 4, 5 };
        double[] y = { 2, 3, 5, 7, 11 }; // 一组非线性数据

        // 进行多项式拟合,设定次数为2
        double[] coefficients = Fit.Polynomial(x, y, degree: 2);

        Console.WriteLine("拟合方程:");
        for (int i = coefficients.Length - 1; i >= 0; i--)
        {
            Console.WriteLine($"{coefficients[i]}x^{i}");
        }
    }
}

对比总结

特征 线性回归 多项式拟合
拟合形式 直线 y=mx+by=mx+b 多项式 y=anxn+...y=an​xn+...
优点 简单、快速 能拟合复杂非线性关系
缺点 只能处理线性关系 容易过拟合,计算复杂度高
适用场景 数据呈线性关系时 数据呈现非线性关系时
相关推荐
简简单单做算法2 小时前
基于mediapipe深度学习和限定半径最近邻分类树算法的人体摔倒检测系统python源码
人工智能·python·深度学习·算法·分类·mediapipe·限定半径最近邻分类树
Tisfy3 小时前
LeetCode 2360.图中的最长环:一步一打卡(不撞南墙不回头) - 通过故事讲道理
算法·leetcode··题解
LuckyAnJo3 小时前
Leetcode-100 链表常见操作
算法·leetcode·链表
双叶8364 小时前
(C语言)虚数运算(结构体教程)(指针解法)(C语言教程)
c语言·开发语言·数据结构·c++·算法·microsoft
工一木子4 小时前
大厂算法面试 7 天冲刺:第5天- 递归与动态规划深度解析 - 高频面试算法 & Java 实战
算法·面试·动态规划
invincible_Tang6 小时前
R格式 (15届B) 高精度
开发语言·算法·r语言
独好紫罗兰6 小时前
洛谷题单2-P5715 【深基3.例8】三位数排序-python-流程图重构
开发语言·python·算法
序属秋秋秋7 小时前
算法基础_基础算法【高精度 + 前缀和 + 差分 + 双指针】
c语言·c++·学习·算法
玉树临风ives7 小时前
leetcode 2360 图中最长的环 题解
算法·leetcode·深度优先·图论
KeithTsui8 小时前
GCC RISCV 后端 -- 控制流(Control Flow)的一些理解
linux·c语言·开发语言·c++·算法