【pytorch】权重为0的情况

py 复制代码
import torch
import torch.nn as nn

# 定义简单的神经网络
class SimpleNN(nn.Module):
    def __init__(self):
        super(SimpleNN, self).__init__()
        self.fc1 = nn.Linear(2, 2)  # 隐藏层
        self.fc2 = nn.Linear(2, 1)  # 输出层
        
        # 将隐藏层权重和偏置初始化为0
        self.fc1.weight.data.fill_(0)
        self.fc1.bias.data.fill_(0)
        
        # 将输出层权重和偏置初始化为0
        self.fc2.weight.data.fill_(0)
        self.fc2.bias.data.fill_(0)

    def forward(self, x):
        x = torch.relu(self.fc1(x))  # 激活函数
        x = self.fc2(x)
        return x

# 创建网络实例
net = SimpleNN()

# 输入数据
input_data = torch.tensor([[1.0, 2.0], [3.0, 4.0]])

# 前向传播
output = net(input_data)
print("Output:", output)

记录一下上述代码,体现了隐含层和输出层的权重为全0时的结果,可惜奇怪的是李沐的例子中权重改为全0仍然能够成功训练,目前还不知道为什么。

相关推荐
Moniane38 分钟前
A2A+MCP构建智能体协作生态:下一代分布式人工智能架构解析
人工智能·分布式·架构
sendnews2 小时前
红松小课首次亮相北京老博会,四大业务矩阵赋能退休生活提质升级
人工智能·物联网
停停的茶2 小时前
深度学习——图像分割
人工智能·深度学习
MIXLLRED3 小时前
自动驾驶技术全景解析:从感知、决策到控制的演进与挑战
人工智能·机器学习·自动驾驶
金融Tech趋势派3 小时前
企业微信AI SCRM推荐:从技术适配与场景功能实践进行评估
大数据·人工智能
Wnq100723 小时前
AI 在法律咨询服务中的革命性变化:技术赋能与生态重构
人工智能·职场和发展·重构·分类·数据分析·全文检索·创业创新
茶杯6753 小时前
极睿iClip易视频:2025年AI混剪领域的革新工具,重构电商内容生产逻辑
人工智能
一点一木3 小时前
🚀 2025 年 10 月 GitHub 十大热门项目排行榜 🔥
前端·人工智能·github
湘-枫叶情缘3 小时前
程序与工业:从附庸到共生,在AI浪潮下的高维重构
人工智能·重构