【pytorch】权重为0的情况

py 复制代码
import torch
import torch.nn as nn

# 定义简单的神经网络
class SimpleNN(nn.Module):
    def __init__(self):
        super(SimpleNN, self).__init__()
        self.fc1 = nn.Linear(2, 2)  # 隐藏层
        self.fc2 = nn.Linear(2, 1)  # 输出层
        
        # 将隐藏层权重和偏置初始化为0
        self.fc1.weight.data.fill_(0)
        self.fc1.bias.data.fill_(0)
        
        # 将输出层权重和偏置初始化为0
        self.fc2.weight.data.fill_(0)
        self.fc2.bias.data.fill_(0)

    def forward(self, x):
        x = torch.relu(self.fc1(x))  # 激活函数
        x = self.fc2(x)
        return x

# 创建网络实例
net = SimpleNN()

# 输入数据
input_data = torch.tensor([[1.0, 2.0], [3.0, 4.0]])

# 前向传播
output = net(input_data)
print("Output:", output)

记录一下上述代码,体现了隐含层和输出层的权重为全0时的结果,可惜奇怪的是李沐的例子中权重改为全0仍然能够成功训练,目前还不知道为什么。

相关推荐
梁下轻语的秋缘7 分钟前
前馈神经网络回归(ANN Regression)从原理到实战
人工智能·神经网络·回归
xu_wenming18 分钟前
华为Watch的ECG功能技术分析
人工智能·嵌入式硬件·算法
不吃香菜葱的程序猿29 分钟前
《Adversarial Sticker: A Stealthy Attack Method in the Physical World》论文分享(侵删)
深度学习·计算机视觉
meisongqing30 分钟前
【软件工程】机器学习多缺陷定位技术分析
人工智能·机器学习·软件工程·缺陷定位
高工智能汽车37 分钟前
大模型浪潮下,黑芝麻智能高性能芯片助力汽车辅助驾驶变革
人工智能·汽车
带娃的IT创业者44 分钟前
《AI大模型应知应会100篇》第62篇:TypeChat——类型安全的大模型编程框架
人工智能·安全
补三补四1 小时前
随机森林(Random Forest)
人工智能·科技·算法·随机森林·机器学习
dundunmm1 小时前
【每天一个知识点】Dip 检验(Dip test)
人工智能·机器学习
侃山1 小时前
pytorch nn.RNN demo
pytorch·rnn·深度学习
Francek Chen1 小时前
【现代深度学习技术】注意力机制07:Transformer
人工智能·pytorch·深度学习·神经网络·transformer